Your browser doesn't support javascript.
loading
Sprayable Zwitterionic Antibacterial Hydrogel With High Mechanical Resilience and Robust Adhesion for Joint Wound Treatment.
Hu, Qinsheng; Du, Yangrui; Bai, Yangjing; Xing, Dandan; Lang, Shiying; Li, Kaijun; Li, Xinyun; Nie, Yong; Liu, Gongyan.
Afiliação
  • Hu Q; Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China.
  • Du Y; Department of Orthopedic Surgery, Yaan People's Hospital, Yaan, 625000, China.
  • Bai Y; College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
  • Xing D; West China School of Nursing, Sichuan University/Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
  • Lang S; College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
  • Li K; College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
  • Li X; College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
  • Nie Y; Dazhou Hospital of Integrated Traditional Chinese and Western Medicine, Dazhou, Sichuan, 635000, China.
  • Liu G; Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China.
Macromol Rapid Commun ; 45(8): e2300683, 2024 Apr.
Article em En | MEDLINE | ID: mdl-38237945
ABSTRACT
Wound healing in movable parts, including the joints and neck, remains a critical challenge due to frequent motions and poor flexibility of dressings, which may lead to mismatching of mechanical properties and poor fitting between dressings and wounds; thus, increasing the risk of bacterial infection. This study proposes a sprayable zwitterionic antibacterial hydrogel with outstanding flexibility and desirable adhesion. This hydrogel precursor is fabricated by combining zwitterionic sulfobetaine methacrylate (SBMA) with poly(sulfobetaine methacrylate-co-dopamine methacrylamide)-modified silver nanoparticles (PSBDA@AgNPs) through robust electrostatic interactions. About 150 s of exposure to UV light, the SBMA monomer polymerizes to form PSB chains entangled with PSBDA@AgNPs, transformed into a stable and adhesion PSB-PSB@Ag hydrogel at the wound site. The resulting hydrogel has adhesive strength (15-38 kPa), large tensile strain (>400%), suitable shape adaptation, and excellent mechanical resilience. Moreover, the hydrogel displays pH-responsive behavior; the acidic microenvironment at the infected wound sites prompts the hydrogel to rapidly release AgNPs and kill bacteria. Further, the healing effect of the hydrogel is demonstrated on the rat neck skin wound, showing improved wound closing rate due to reduced inflammation and enhanced angiogenesis. Overall, the sprayable zwitterionic antibacterial hydrogel has significant potential to promote joint skin wound healing.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Prata / Cicatrização / Hidrogéis / Nanopartículas Metálicas / Metacrilatos / Antibacterianos Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Prata / Cicatrização / Hidrogéis / Nanopartículas Metálicas / Metacrilatos / Antibacterianos Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article