Your browser doesn't support javascript.
loading
Tuning Wetting-Dewetting Thermomechanical Energy for Hydrophobic Nanopores via Preferential Intrusion.
Bartolomé, Luis; Anagnostopoulos, Argyrios; Lowe, Alexander R; Sleczkowski, Piotr; Amayuelas, Eder; Le Donne, Andrea; Wasiak, Michal; Chora Zewski, Miroslaw; Meloni, Simone; Grosu, Yaroslav.
Afiliação
  • Bartolomé L; Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain.
  • Anagnostopoulos A; Institute of Chemistry, University of Silesia, 40-006 Katowice, Poland.
  • Lowe AR; Institute of Chemistry, University of Silesia, 40-006 Katowice, Poland.
  • Sleczkowski P; Institute of Chemistry, University of Silesia, 40-006 Katowice, Poland.
  • Amayuelas E; Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain.
  • Le Donne A; Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, Via Luigi Borsari 46, I-44121 Ferrara, Italy.
  • Wasiak M; Department of Physical Chemistry, Faculty of Chemistry, University of Lódz, Pomorska 165, 90-236 Lódz, Poland.
  • Chora Zewski M; Institute of Chemistry, University of Silesia, 40-006 Katowice, Poland.
  • Meloni S; Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, Via Luigi Borsari 46, I-44121 Ferrara, Italy.
  • Grosu Y; Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain.
J Phys Chem Lett ; 15(4): 880-887, 2024 Feb 01.
Article em En | MEDLINE | ID: mdl-38241150
ABSTRACT
Heat and the work of compression/decompression are among the basic properties of thermodynamic systems. Being relevant to many industrial and natural processes, this thermomechanical energy is challenging to tune due to fundamental boundaries for simple fluids. Here via direct experimental and atomistic observations, we demonstrate, for fluids consisting of nanoporous material and a liquid, one can overcome these limitations and noticeably affect both thermal and mechanical energies of compression/decompression exploiting preferential intrusion of water from aqueous solutions into subnanometer pores. We hypothesize that this effect is due to the enthalpy of dilution manifesting itself as the aqueous solution concentrates upon the preferential intrusion of pure water into pores. We suggest this genuinely subnanoscale phenomenon can be potentially a strategy for controlling the thermomechanical energy of microporous liquids and tuning the wetting/dewetting heat of nanopores relevant to a variety of natural and technological processes spanning from biomedical applications to oil-extraction and renewable energy.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article