Your browser doesn't support javascript.
loading
Spatio-Temporal Feature Transformation Based Polyp Recognition for Automatic Detection: Higher Accuracy than Novice Endoscopists in Colorectal Polyp Detection and Diagnosis.
Xu, Jianhua; Kuai, Yaxian; Chen, Qianqian; Wang, Xu; Zhao, Yihang; Sun, Bin.
Afiliação
  • Xu J; Anhui Medical University, Hefei, Anhui, 230032, China.
  • Kuai Y; The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
  • Chen Q; Anhui Medical University, Hefei, Anhui, 230032, China.
  • Wang X; The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
  • Zhao Y; Anhui Medical University, Hefei, Anhui, 230032, China.
  • Sun B; The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
Dig Dis Sci ; 69(3): 911-921, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38244123
ABSTRACT

BACKGROUND:

Artificial intelligence represents an emerging area with promising potential for improving colonoscopy quality.

AIMS:

To develop a colon polyp detection model using STFT and evaluate its performance through a randomized sample experiment.

METHODS:

Colonoscopy videos from the Digestive Endoscopy Center of the First Affiliated Hospital of Anhui Medical University, recorded between January 2018 and November 2022, were selected and divided into two datasets. To verify the model's practical application in clinical settings, 1500 colonoscopy images and 1200 polyp images of various sizes were randomly selected from the test set and compared with the STFT model's and endoscopists' recognition results with different years of experience.

RESULTS:

In the randomized sample trial involving 1500 colonoscopy images, the STFT model demonstrated significantly higher accuracy and specificity compared to endoscopists with low years of experience (0.902 vs. 0.809, 0.898 vs. 0.826, respectively). Moreover, the model's sensitivity was 0.904, which was higher than that of endoscopists with low, medium, or high years of experience (0.80, 0.896, 0.895, respectively), with statistical significance (P < 0.05). In the randomized sample experiment of 1200 polyp images of different sizes, the accuracy of the STFT model was significantly higher than that of endoscopists with low years of experience when the polyp size was ≤ 0.5 cm and 0.6-1.0 cm (0.902 vs. 0.70, 0.953 vs. 0.865, respectively).

CONCLUSIONS:

The STFT-based colon polyp detection model exhibits high accuracy in detecting polyps in colonoscopy videos, with a particular efficiency in detecting small polyps (≤ 0.5 cm)(0.902 vs. 0.70, P < 0.001).
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias Colorretais / Pólipos do Colo Tipo de estudo: Clinical_trials / Diagnostic_studies Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias Colorretais / Pólipos do Colo Tipo de estudo: Clinical_trials / Diagnostic_studies Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article