Your browser doesn't support javascript.
loading
Molecular docking, 3D-QASR and molecular dynamics simulations of benzimidazole Pin1 inhibitors.
Liu, Min; Wang, Bingli; Liu, Huan; Xia, Haolun; Ding, Lina.
Afiliação
  • Liu M; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zh
  • Wang B; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zh
  • Liu H; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zh
  • Xia H; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zh
  • Ding L; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zh
Phys Chem Chem Phys ; 26(5): 4643-4656, 2024 Jan 31.
Article em En | MEDLINE | ID: mdl-38251755
ABSTRACT
Pin1 (protein interacting with never-in-mitosis akinase-1) is a member of the family of peptidylprolyl cis-trans isomerases (PPIases) that specifically recognize and isomerize substrates containing phosphorylated Ser/Thr-Pro sequences. Pin1 is involved in many cellular processes and plays a key role in the cell cycle, transcriptional regulation, cell metabolism, proliferation and differentiation, and its abnormalities lead to degenerative and neoplastic diseases. Pin1 is highly expressed in human cancers and promotes the development of tumors by activating multiple oncogenes and inactivating multiple tumor suppressor genes, making it an attractive target for cancer therapy. In this study, we investigated the binding mechanism and conformational relationship between benzimidazole Pin1 inhibitors and Pin1 proteins by molecular docking, three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling, binding free energy calculations and decomposition, and molecular dynamics simulations. Molecular docking and molecular dynamics simulations disclosed the most likely binding pose of benzimidazoles with the Pin1 protein. The results of 3D-QSAR modeling indicated that electrostatic fields, hydrophobic fields and hydrogen bonding play important roles in the binding process of inhibitors to proteins. The binding free energy calculations and energy decomposition indicated that Lys63, Arg69, Cys113, Leu122, Met130, and Ser154 may be key residues in the binding of benzimidazole-based inhibitors to the Pin1 protein. This study provides an important theoretical basis for the design and optimization of benzimidazole compounds.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Benzimidazóis / Simulação de Dinâmica Molecular Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Benzimidazóis / Simulação de Dinâmica Molecular Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article