Your browser doesn't support javascript.
loading
KHCO3-activated high surface area biochar derived from brown algae: A case study for efficient adsorption of Cr(VI) in aqueous solution.
Truong, Quoc-Minh; Nguyen, Thanh-Binh; Chen, Chiu-Wen; Chen, Wei-Hsin; Bui, Xuan-Thanh; Dong, Cheng-Di.
Afiliação
  • Truong QM; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Management Science, Thu Dau Mot University, Binh Duong 75000, Viet Nam.
  • Nguyen TB; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
  • Chen CW; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
  • Chen WH; Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
  • Bui XT; Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT
  • Dong CD; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan. Electronic address: cddong@nkust.
Environ Res ; 247: 118227, 2024 Apr 15.
Article em En | MEDLINE | ID: mdl-38253192
ABSTRACT
The current study aimed to assess the effectiveness of biochar formed from algae in the removal of Cr(VI) through the process of impregnating brown algae Sargassum hemiphyllum with KHCO3. The synthesis of KHCO3-activated biochar (KBAB-3), demonstrating remarkable adsorption capabilities for Cr(VI), was accomplished utilizing a mixture of brown algae and KHCO3 in a mass ratio of 13, followed by calcination at a temperature of 700 °C. Based on the empirical evidence, it can be observed that KBAB-3 shown a significant ability to adsorb Cr(VI) within a range of 60-160 mg g-1 across different environmental conditions. In addition, the KBAB-3 material demonstrated the advantageous characteristic of easy separation, allowing for the continued maintenance of a high efficiency in removing Cr(VI) even after undergoing numerous cycles of reuse. In conclusion, the application of KBAB-3, a novel adsorbent, exhibits considerable prospects for effective removal of Cr(VI) from diverse water sources in the near future.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Carvão Vegetal / Phaeophyceae Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Carvão Vegetal / Phaeophyceae Idioma: En Ano de publicação: 2024 Tipo de documento: Article