Your browser doesn't support javascript.
loading
KCNQ2/3 regulates efferent mediated slow excitation of vestibular afferents in mammals.
bioRxiv ; 2024 Jan 01.
Article em En | MEDLINE | ID: mdl-38260489
ABSTRACT
Primary vestibular afferents transmit information from hair cells about head position and movement to the CNS, which is critical for maintaining balance, gaze stability and spatial navigation. The CNS, in turn, modulates hair cells and afferents via the efferent vestibular system (EVS) and its activation of several cholinergic signaling mechanisms. Electrical stimulation of EVS neurons gives rise to three kinetically- and mechanistically-distinct afferent responses including a slow excitation, a fast excitation, and a fast inhibition. EVS-mediated slow excitation is attributed to odd-numbered muscarinic acetylcholine receptors (mAChRs) on the afferent whose activation leads to the closure of a potassium conductance and increased afferent discharge. Likely effector candidates include low-threshold, voltage-gated potassium channels belonging to the KCNQ (Kv7.X) family, which are involved in neuronal excitability across the nervous system and are subject to mAChR modulation. Specifically, KCNQ2/3 heteromeric channels may be the molecular correlates for the M-current, a potassium current that is blocked following the activation of odd-numbered mAChRs. To this end, multiple members of the KCNQ channel family, including KCNQ2 and KCNQ3, are localized to several microdomains within vestibular afferent endings, where they influence afferent excitability and could be targeted by EVS neurons. Additionally, the relative expression of KCNQ subunits appears to vary across the sensory epithelia and among different afferent types. However, it is unclear which KCNQ channel subunits are targeted by mAChR activation and whether that also varies among different afferent classes. Here we show that EVS-mediated slow excitation is blocked and enhanced by the non-selective KCNQ channel blocker XE991 and opener retigabine, respectively. Using KCNQ subunit-selective drugs, we observed that a KCNQ2 blocker blocks the slow response in irregular afferents, while a KCNQ2/3 opener enhances slow responses in regular afferents. The KCNQ2 blockers did not appear to affect resting afferent discharge rates, while KCNQ2/3 or KCNQ2/4 openers decreased afferent excitability. Here, we show pharmacological evidence that KCNQ2/3 subunits are likely targeted by mAChR activation in mammalian vestibular afferents. Additionally, we show that KCNQ3 KO mice have altered resting discharge rate as well as EVS-mediated slow response. These data together suggest that KCNQ channels play a role in slow response and discharge rate of vestibular afferents, which can be modulated by EVS in mammals.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article