Structural Conjugation Tuning in Covalent Organic Frameworks Boosts Charge Transfer and Photocatalysis Performances.
ACS Appl Mater Interfaces
; 16(5): 5869-5880, 2024 Feb 07.
Article
em En
| MEDLINE
| ID: mdl-38277475
ABSTRACT
Structural conjugation greatly affects the optical and electronic properties of the COF photocatalyst. Herein, we show that 2D hydrazone COFs with either π-extended biphenyl (BPh-COF) or acetylene (AC-COF) frameworks demonstrated distinct charge transfer and photocatalytic performances. The two COFs show good crystallinity and decent porosity as their frameworks are enforced by intra/interlayers hydrogen bonding. However, computational and experimental data reveal that AC-COF managed broader visible-light absorption and narrower optical bandgaps and performed efficient photoinduced charge separation and transfer in comparison with BPh-COF, meaning that the ethynyl skeleton with enhanced planarity better improves the π-conjugation of the whole structure. As a result, AC-COF exhibited an ideal bandgap for rapid oxidative coupling of amines under visible-light irradiation. Furthermore, taking advantage of its better charge transfer properties, AC-COF demonstrated considerable enhanced product conversion and notable functional tolerance for metallaphotocatalytic C-O cross-coupling of a wide range of both aryl bromides and chlorides with alcohols. More importantly, besides being recoverable, AC-COF showcased the previously inaccessible etherification of dihaloarene. This report shows a facile approach for manipulating the structure-activity relationship and paves the way for the development of a COF photocatalyst for solar-to-chemical energy conversion.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article