Your browser doesn't support javascript.
loading
Ultrafast electronic relaxation pathways of the molecular photoswitch quadricyclane.
Borne, Kurtis D; Cooper, Joseph C; Ashfold, Michael N R; Bachmann, Julien; Bhattacharyya, Surjendu; Boll, Rebecca; Bonanomi, Matteo; Bosch, Michael; Callegari, Carlo; Centurion, Martin; Coreno, Marcello; Curchod, Basile F E; Danailov, Miltcho B; Demidovich, Alexander; Di Fraia, Michele; Erk, Benjamin; Faccialà, Davide; Feifel, Raimund; Forbes, Ruaridh J G; Hansen, Christopher S; Holland, David M P; Ingle, Rebecca A; Lindh, Roland; Ma, Lingyu; McGhee, Henry G; Muvva, Sri Bhavya; Nunes, Joao Pedro Figueira; Odate, Asami; Pathak, Shashank; Plekan, Oksana; Prince, Kevin C; Rebernik, Primoz; Rouzée, Arnaud; Rudenko, Artem; Simoncig, Alberto; Squibb, Richard J; Venkatachalam, Anbu Selvam; Vozzi, Caterina; Weber, Peter M; Kirrander, Adam; Rolles, Daniel.
Afiliação
  • Borne KD; J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA.
  • Cooper JC; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
  • Ashfold MNR; School of Chemistry, Cantocks Close, University of Bristol, Bristol, UK.
  • Bachmann J; Chemistry of Thin Film Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
  • Bhattacharyya S; J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA.
  • Boll R; European XFEL, Schenefeld, Germany.
  • Bonanomi M; Istituto di Fotonica e Nanotecnologie (CNR-IFN), CNR, Milano, Italy.
  • Bosch M; Dipartimento di Fisica, Politecnico di Milano, Milano, Italy.
  • Callegari C; Chemistry of Thin Film Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
  • Centurion M; Elettra - Sincrotrone Trieste S.C.p.A., Trieste, Italy.
  • Coreno M; Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, USA.
  • Curchod BFE; Elettra - Sincrotrone Trieste S.C.p.A., Trieste, Italy.
  • Danailov MB; Istituto di Struttura della Materia (ISM-CNR), CNR, Trieste, Italy.
  • Demidovich A; School of Chemistry, Cantocks Close, University of Bristol, Bristol, UK.
  • Di Fraia M; Elettra - Sincrotrone Trieste S.C.p.A., Trieste, Italy.
  • Erk B; Elettra - Sincrotrone Trieste S.C.p.A., Trieste, Italy.
  • Faccialà D; Elettra - Sincrotrone Trieste S.C.p.A., Trieste, Italy.
  • Feifel R; Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
  • Forbes RJG; Istituto di Fotonica e Nanotecnologie (CNR-IFN), CNR, Milano, Italy.
  • Hansen CS; Department of Physics, University of Gothenburg, Gothenburg, Sweden.
  • Holland DMP; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Ingle RA; School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia.
  • Lindh R; Daresbury Laboratory, Warrington, UK.
  • Ma L; Department of Chemistry, University College London, London, UK.
  • McGhee HG; Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden.
  • Muvva SB; Department of Chemistry, Brown University, Providence, RI, USA.
  • Nunes JPF; Department of Chemistry, University College London, London, UK.
  • Odate A; Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, USA.
  • Pathak S; Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, USA.
  • Plekan O; Department of Chemistry, Brown University, Providence, RI, USA.
  • Prince KC; J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA.
  • Rebernik P; Elettra - Sincrotrone Trieste S.C.p.A., Trieste, Italy.
  • Rouzée A; Elettra - Sincrotrone Trieste S.C.p.A., Trieste, Italy.
  • Rudenko A; Elettra - Sincrotrone Trieste S.C.p.A., Trieste, Italy.
  • Simoncig A; Max-Born-Institut, Berlin, Germany.
  • Squibb RJ; J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA.
  • Venkatachalam AS; Elettra - Sincrotrone Trieste S.C.p.A., Trieste, Italy.
  • Vozzi C; Department of Physics, University of Gothenburg, Gothenburg, Sweden.
  • Weber PM; J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA.
  • Kirrander A; Istituto di Fotonica e Nanotecnologie (CNR-IFN), CNR, Milano, Italy.
  • Rolles D; Department of Chemistry, Brown University, Providence, RI, USA.
Nat Chem ; 16(4): 499-505, 2024 Apr.
Article em En | MEDLINE | ID: mdl-38307994
ABSTRACT
The light-induced ultrafast switching between molecular isomers norbornadiene and quadricyclane can reversibly store and release a substantial amount of chemical energy. Prior work observed signatures of ultrafast molecular dynamics in both isomers upon ultraviolet excitation but could not follow the electronic relaxation all the way back to the ground state experimentally. Here we study the electronic relaxation of quadricyclane after exciting in the ultraviolet (201 nanometres) using time-resolved gas-phase extreme ultraviolet photoelectron spectroscopy combined with non-adiabatic molecular dynamics simulations. We identify two competing pathways by which electronically excited quadricyclane molecules relax to the electronic ground state. The fast pathway (<100 femtoseconds) is distinguished by effective coupling to valence electronic states, while the slow pathway involves initial motions across Rydberg states and takes several hundred femtoseconds. Both pathways facilitate interconversion between the two isomers, albeit on different timescales, and we predict that the branching ratio of norbornadiene/quadricyclane products immediately after returning to the electronic ground state is approximately 32.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article