Your browser doesn't support javascript.
loading
Simultaneously Regulated Highly Polarized and Long-Lived Valley Excitons in WSe2/GaN Heterostructures.
Liu, Haiyang; Zhang, Zongnan; Zhang, Chenhao; Li, Xu; Zhang, Chunmiao; Xu, Feiya; Wu, Yaping; Wu, Zhiming; Kang, Junyong.
Afiliação
  • Liu H; Department of Physics, Engineering Research Centre for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, P. R. China.
  • Zhang Z; School of Physical Science and Technology, Wuhan University, Wuhan 430072, P. R. China.
  • Zhang C; Department of Physics, Engineering Research Centre for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, P. R. China.
  • Li X; Department of Physics, Engineering Research Centre for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, P. R. China.
  • Zhang C; Department of Physics, Engineering Research Centre for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, P. R. China.
  • Xu F; Department of Physics, Engineering Research Centre for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, P. R. China.
  • Wu Y; Department of Physics, Engineering Research Centre for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, P. R. China.
  • Wu Z; Department of Physics, Engineering Research Centre for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, P. R. China.
  • Kang J; Department of Physics, Engineering Research Centre for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, P. R. China.
Nano Lett ; 24(6): 1851-1858, 2024 Feb 14.
Article em En | MEDLINE | ID: mdl-38315876
ABSTRACT
Interlayer excitons, with prolonged lifetimes and tunability, hold potential for advanced optoelectronics. Previous research on the interlayer excitons has been dominated by two-dimensional heterostructures. Here, we construct WSe2/GaN composite heterostructures, in which the doping concentration of GaN and the twist angle of bilayer WSe2 are employed as two ingredients for the manipulation of exciton behaviors and polarizations. The exciton energies in monolayer WSe2/GaN can be regulated continuously by the doping levels of the GaN substrate, and a remarkable increase in the valley polarizations is achieved. Especially in a heterostructure with 4°-twisted bilayer WSe2, a maximum polarization of 38.9% with a long lifetime is achieved for the interlayer exciton. Theoretical calculations reveal that the large polarization and long lifetime are attributed to the high exciton binding energy and large spin flipping energy during depolarization in bilayer WSe2/GaN. This work introduces a distinctive member of the interlayer exciton with a high degree of polarization and a long lifetime.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article