Your browser doesn't support javascript.
loading
Modulator of TMB-associated immune infiltration (MOTIF) predicts immunotherapy response and guides combination therapy.
Qian, Zheng-Yu; Pan, Yi-Qian; Li, Xue-Xin; Chen, Yan-Xing; Wu, Hao-Xiang; Liu, Ze-Xian; Kosar, Martin; Bartek, Jiri; Wang, Zi-Xian; Xu, Rui-Hua.
Afiliação
  • Qian ZY; Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestina
  • Pan YQ; Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestina
  • Li XX; Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm S-171 21, Sweden; Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China.
  • Chen YX; Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestina
  • Wu HX; Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestina
  • Liu ZX; Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestina
  • Kosar M; Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm S-171 21, Sweden; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China; Edinburgh Medical School
  • Bartek J; Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm S-171 21, Sweden; Danish Cancer Society Research Center, Copenhagen DK-2100, Denmark. Electronic address: jb@cancer.dk.
  • Wang ZX; Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestina
  • Xu RH; Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestina
Sci Bull (Beijing) ; 69(6): 803-822, 2024 Mar 30.
Article em En | MEDLINE | ID: mdl-38320897
ABSTRACT
Patients with high tumor mutational burden (TMB) levels do not consistently respond to immune checkpoint inhibitors (ICIs), possibly because a high TMB level does not necessarily result in adequate infiltration of CD8+ T cells. Using bulk ribonucleic acid sequencing (RNA-seq) data from 9311 tumor samples across 30 cancer types, we developed a novel tool called the modulator of TMB-associated immune infiltration (MOTIF), which comprises genes that can determine the extent of CD8+ T cell infiltration prompted by a certain TMB level. We confirmed that MOTIF can accurately reflect the integrity and defects of the cancer-immunity cycle. By analyzing 84 human single-cell RNA-seq datasets from 32 types of solid tumors, we revealed that MOTIF can provide insights into the diverse roles of various cell types in the modulation of CD8+ T cell infiltration. Using pretreatment RNA-seq data from 13 ICI-treated cohorts, we validated the use of MOTIF in predicting CD8+ T cell infiltration and ICI efficacy. Among the components of MOTIF, we identified EMC3 as a negative regulator of CD8+ T cell infiltration, which was validated via in vivo studies. Additionally, MOTIF provided guidance for the potential combinations of programmed death 1 blockade with certain immunostimulatory drugs to facilitate CD8+ T cell infiltration and improve ICI efficacy.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Linfócitos T CD8-Positivos / Neoplasias Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Linfócitos T CD8-Positivos / Neoplasias Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article