Your browser doesn't support javascript.
loading
Heterostructured grafting of NiFe-layered double hydroxide@TiO2 for boosting photoelectrochemical cathodic protection.
Wang, Zhi-Jun; Xie, Hui; Jun, Seong Chan; Li, Jiang; Wei, Li Cheng; Fang, Yu Chen; Liu, Shude; Ma, Ming; Xing, Zheng.
Afiliação
  • Wang ZJ; School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China. xingzh7@mail.sysu.edu.cn.
  • Xie H; School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China. xingzh7@mail.sysu.edu.cn.
  • Jun SC; School of Mechanical Engineering, Yonsei University, Seoul 120-749, South Korea.
  • Li J; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. ming.ma@siat.ac.cn.
  • Wei LC; School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China. xingzh7@mail.sysu.edu.cn.
  • Fang YC; School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China. xingzh7@mail.sysu.edu.cn.
  • Liu S; College of Textiles, Donghua University, Shanghai 201620, P.R. China. sdliu@dhu.edu.cn.
  • Ma M; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. ming.ma@siat.ac.cn.
  • Xing Z; School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China. xingzh7@mail.sysu.edu.cn.
Mater Horiz ; 11(7): 1808-1816, 2024 Apr 02.
Article em En | MEDLINE | ID: mdl-38323653
ABSTRACT
Accelerating the oxidation process at photoanode-electrolyte interfaces can prolong the lifetime of photoexcited electrons and improve the efficiency of photoelectrochemical cathodic protection (PECCP) systems without relying on hole scavengers. However, the systematic design of precisely structured heterostructures for efficient photoanodes remains challenging. Here we meticulously engineered a type-II heterostructure featuring precise spatial organization, wherein NiFe-layered double hydroxide nanosheets (NiFe-LDH NSs) were assembled onto annealed TiO2 nanorod arrays (ATNAs), demonstrating their effectiveness in achieving efficient PECCP. The interfacial electronic coupling and appropriate energy alignment between the NiFe-LDH NSs and ATNAs allowed rapid hole extraction from the ATNAs to the NiFe-LDH NSs. Furthermore, the uniform distribution of the NiFe-LDH NSs on top of ATNAs drastically reduced the overpotential of oxygen evolution reactions (OER) from 370 to 200 mV and Tafel slope from 162 to 56 mV dec-1, leading to significantly improved cathodic protection of 304 stainless steel (SS) under extended illumination and interesting post-illumination protection. In addition, with the increase of testing cycles, the as-prepared NiFe-LDH NSs@ATNAs demonstrated a progressively enhanced cathodic protection potential from 0.15 to 0.13 V vs. RHE over 50 cycles. These findings provide important guidelines for the design of future high-efficiency green metal protection through rational photoanode design.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article