Your browser doesn't support javascript.
loading
Boosting oxygen vacancies by modulating the morphology of Au decorated In2O3 with enhanced CO2 hydrogenation activity to CH3OH.
Hou, Ruxian; Xiao, Jiewen; Wu, Qian; Zhang, Tianyu; Wang, Qiang.
Afiliação
  • Hou R; Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineeri
  • Xiao J; Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineeri
  • Wu Q; Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineeri
  • Zhang T; Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineeri
  • Wang Q; Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineeri
J Environ Sci (China) ; 140: 91-102, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38331518
ABSTRACT
CO2 hydrogenation to methanol has become one of the most promising ways for CO2 utilization, however, the CO2 conversion rate and methanol selectivity of this reaction still need to be improved for industrial application. Here we investigated the structure-activity relationship for CO2 conversion to methanol of In2O3-based catalysts by modulating morphology and decorating Au. Three different Au/In2O3 catalysts were prepared, their activity follow the sequence of Au/In2O3-nanosphere (Au/In2O3-NS) > Au/In2O3-nanoplate (Au/In2O3-NP) > Au/In2O3-hollow microsphere (Au/In2O3-HM). Au/In2O3-NS exhibited the best performance with good CO2 conversion of 12.7%, high methanol selectivity of 59.8%, and large space time yield of 0.32 gCH3OH/(hr·gcat) at 300°C. The high performance of Au/In2O3-NS was considered as the presence of Au. It contributes to the creation of more surface oxygen vacancies, which further promoted the CO2 adsorption and facilitated CO2 activation to form the formate intermediates towards methanol. This work clearly suggests that the activity of In2O3 catalyst can be effective enhanced by structure engineering and Au decorating.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dióxido de Carbono / Metanol Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dióxido de Carbono / Metanol Idioma: En Ano de publicação: 2024 Tipo de documento: Article