Your browser doesn't support javascript.
loading
Thermal Reactions of NiAl3O6+ and Al4O6+ with Methane: Reactivity Enhancement by Doping.
Sun, Chu-Man; Wei, Gong-Ping; Yang, Yuan; Zhao, Yan-Xia.
Afiliação
  • Sun CM; Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
  • Wei GP; State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
  • Yang Y; Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
  • Zhao YX; State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
J Phys Chem A ; 128(7): 1218-1225, 2024 Feb 22.
Article em En | MEDLINE | ID: mdl-38340065
ABSTRACT
Investigation of the reactivity of heteronuclear metal oxide clusters is an important way to uncover the molecular-level mechanisms of the doping effect. Herein, we performed a comparative study on the reactions of CH4 with NiAl3O6+ and Al4O6+ cluster cations at room temperature to understand the role of Ni during the activation and transformation of methane. Mass spectrometric experiments identify that both NiAl3O6+ and Al4O6+ could bring about hydrogen atom abstraction reaction to generate CH3• radical; however, only NiAl3O6+ has the potential to stabilize [CH3] moiety and then transform [CH3] to CH2O. Density functional theory calculations demonstrate that the terminal oxygen radicals (Ot-•) bound to Al act as the reactive sites for the two clusters to activate the first C-H bond. Although the Ni atom cannot directly participate in methane activation, it can manipulate the electronic environment of the surrounding bridging oxygen atoms (Ob) and enable such Ob to function as an electron reservoir to help Ot-• oxidize CH4 to [H-O-CH3]. The facile reduction of Ni3+ to Ni+ also facilitates the subsequent step of activating the second C-H bond by the bridging "lattice oxygen" (Ob2-), finally enabling the oxidation of methane into formaldehyde. The important role of the dopant Ni played in improving the product selectivity of CH2O for methane conversion discovered in this study allows us to have a possible molecule-level understanding of the excellent performance of the catalysts doping with nickel.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article