Your browser doesn't support javascript.
loading
Balancing macrophage polarization via stem cell-derived apoptotic bodies for diabetic wound healing.
Mao, Jiayi; Qian, Shutong; Zhao, Qiuyu; Zhao, Binfan; Lu, Bolun; Zhang, Liucheng; Mao, Xiyuan; Zhang, Yuguang; Cui, Wenguo; Sun, Xiaoming.
Afiliação
  • Mao J; Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, P.R. China.
  • Qian S; Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, P.R. China.
  • Zhao Q; Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, P.R. China.
  • Zhao B; Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, P.R. China.
  • Lu B; Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, P.R. China.
  • Zhang L; Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, P.R. China.
  • Mao X; Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, P.R. China.
  • Zhang Y; Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, P.R. China. Electronic address: zhangyg18@126.com.
  • Cui W; Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P.R. China. Electronic address: wgc
  • Sun X; Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, P.R. China. Electronic address: drsunxm@126.com.
Med ; 5(2): 148-168.e8, 2024 Feb 09.
Article em En | MEDLINE | ID: mdl-38340709
ABSTRACT

BACKGROUND:

Adipose tissue-derived stem cell-derived apoptotic bodies (ADSC-ABs) have shown great potential for immunomodulation and regeneration, particularly in diabetic wound therapy. However, their local application has been limited by unclear regulatory mechanisms, rapid clearance, and short tissue retention times.

METHODS:

We analyzed the key role molecules and regulatory pathways of ADSC-ABs in regulating inflammatory macrophages by mRNA sequencing and microRNA (miRNA) sequencing and then verified them by gene knockdown. To prevent rapid clearance, we employed microfluidics technology to prepare methacrylate-anhydride gelatin (GelMA) microspheres (GMS) for controlled release of ABs. Finally, we evaluated the effectiveness of ADSC-AB-laden GMSs (ABs@GMSs) in a diabetic rat wound model.

FINDINGS:

Our results demonstrated that ADSC-ABs effectively balanced macrophage inflammatory polarization through the janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, mediated by miR-20a-5p. Furthermore, we showed that AB@GMSs had good biocompatibility, significantly delayed local clearance of ABs, and ameliorated diabetic wound inflammation and promoted vascularization, thus facilitating its healing.

CONCLUSIONS:

Our study reveals the regulatory mechanism of ADSC-ABs in balancing macrophage inflammatory polarization and highlightsthe importance of delaying their local clearance by GMSs. These findings have important implications for the development of novel therapies for diabetic wound healing.

FUNDING:

This research was supported by the National Key Research and Development Program of China (2020YFA0908200), National Natural Science Foundation of China (82272263, 82002053, 32000937, and 82202467), Shanghai "Rising Stars of Medical Talents" Youth Development Program (22MC1940300), Shanghai Municipal Health Commission (20204Y0354), and Shanghai Science and Technology Development Funds (22YF1421400).
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Diabetes Mellitus / Vesículas Extracelulares Tipo de estudo: Prognostic_studies Limite: Animals País como assunto: Asia Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Diabetes Mellitus / Vesículas Extracelulares Tipo de estudo: Prognostic_studies Limite: Animals País como assunto: Asia Idioma: En Ano de publicação: 2024 Tipo de documento: Article