Your browser doesn't support javascript.
loading
Fluorescent protein chromophores modified with aromatic heterocycles for photodynamic therapy and two-photon fluorescence imaging.
Li, Weilong; Feng, Wan; Liu, Badi; Qian, Ying.
Afiliação
  • Li W; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China. yingqian@seu.edu.cn.
  • Feng W; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China. yingqian@seu.edu.cn.
  • Liu B; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China. yingqian@seu.edu.cn.
  • Qian Y; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China. yingqian@seu.edu.cn.
Org Biomol Chem ; 22(9): 1892-1900, 2024 02 28.
Article em En | MEDLINE | ID: mdl-38349610
ABSTRACT
In this paper, three fluorescent protein chromophore analogs PFPAr (PFPP, PFPC, and PFPT) were synthesized and proved to be useful for photodynamic therapy and two-photon fluorescence imaging. By adding five- or six-membered aromatic heterocycles to the photosensitizer PFP, we obtained three fluorescent protein photosensitizers PFPAr with better performances. As a demonstration, compared with the reported photosensitizer PFP, photosensitizer PFPP exhibits larger emission wavelengths (701 nm) and achieves a slight enhancement in the efficiency of singlet oxygen (ΦΔ = 23%). Notably, PFPP can perform good two-photon fluorescence imaging with an 800 nm femtosecond laser in zebrafish. In in vitro cytotoxicity assays, PFPP shows good phototoxicity (IC50 = 4.12 µM) and acceptable dark toxicity (cell viability assay >90%). The reactive oxygen imaging experiments and AO/EB double staining assay indicate that PFPP can generate singlet oxygen to eliminate A-549 tumor cells effectively with photoexcitation of 460 nm blue light (20 mW cm-2). Furthermore, PFPP can label the lysosomes of tumor cells with high specificity for lysosomes (Pearson's correlation coefficient of 0.91). Thus, our study demonstrated that the rational introduction of aromatic heterocycles into fluorescent protein photosensitizers can effectively enhance the key parameters of photosensitivity and pave the way for further two-photon photodynamic therapy.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fotoquimioterapia / Fármacos Fotossensibilizantes Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fotoquimioterapia / Fármacos Fotossensibilizantes Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article