Your browser doesn't support javascript.
loading
Inhibition of CD40L with Frexalimab in Multiple Sclerosis.
Vermersch, Patrick; Granziera, Cristina; Mao-Draayer, Yang; Cutter, Gary; Kalbus, Oleksandr; Staikov, Ivan; Dufek, Michal; Saubadu, Stephane; Bejuit, Raphael; Truffinet, Philippe; Djukic, Biljana; Wallstroem, Erik; Giovannoni, Gavin.
Afiliação
  • Vermersch P; From the University of Lille, INSERM Unité 1172, Lille Neuroscience and Cognition, Lille University Hospital, University Hospital Federation Precise, Lille (P.V.), and Sanofi, Chilly-Mazarin (S.S., R.B., P.T.) - both in France; Translational Imaging in Neurology Basel, Department of Biomedical Engin
  • Granziera C; From the University of Lille, INSERM Unité 1172, Lille Neuroscience and Cognition, Lille University Hospital, University Hospital Federation Precise, Lille (P.V.), and Sanofi, Chilly-Mazarin (S.S., R.B., P.T.) - both in France; Translational Imaging in Neurology Basel, Department of Biomedical Engin
  • Mao-Draayer Y; From the University of Lille, INSERM Unité 1172, Lille Neuroscience and Cognition, Lille University Hospital, University Hospital Federation Precise, Lille (P.V.), and Sanofi, Chilly-Mazarin (S.S., R.B., P.T.) - both in France; Translational Imaging in Neurology Basel, Department of Biomedical Engin
  • Cutter G; From the University of Lille, INSERM Unité 1172, Lille Neuroscience and Cognition, Lille University Hospital, University Hospital Federation Precise, Lille (P.V.), and Sanofi, Chilly-Mazarin (S.S., R.B., P.T.) - both in France; Translational Imaging in Neurology Basel, Department of Biomedical Engin
  • Kalbus O; From the University of Lille, INSERM Unité 1172, Lille Neuroscience and Cognition, Lille University Hospital, University Hospital Federation Precise, Lille (P.V.), and Sanofi, Chilly-Mazarin (S.S., R.B., P.T.) - both in France; Translational Imaging in Neurology Basel, Department of Biomedical Engin
  • Staikov I; From the University of Lille, INSERM Unité 1172, Lille Neuroscience and Cognition, Lille University Hospital, University Hospital Federation Precise, Lille (P.V.), and Sanofi, Chilly-Mazarin (S.S., R.B., P.T.) - both in France; Translational Imaging in Neurology Basel, Department of Biomedical Engin
  • Dufek M; From the University of Lille, INSERM Unité 1172, Lille Neuroscience and Cognition, Lille University Hospital, University Hospital Federation Precise, Lille (P.V.), and Sanofi, Chilly-Mazarin (S.S., R.B., P.T.) - both in France; Translational Imaging in Neurology Basel, Department of Biomedical Engin
  • Saubadu S; From the University of Lille, INSERM Unité 1172, Lille Neuroscience and Cognition, Lille University Hospital, University Hospital Federation Precise, Lille (P.V.), and Sanofi, Chilly-Mazarin (S.S., R.B., P.T.) - both in France; Translational Imaging in Neurology Basel, Department of Biomedical Engin
  • Bejuit R; From the University of Lille, INSERM Unité 1172, Lille Neuroscience and Cognition, Lille University Hospital, University Hospital Federation Precise, Lille (P.V.), and Sanofi, Chilly-Mazarin (S.S., R.B., P.T.) - both in France; Translational Imaging in Neurology Basel, Department of Biomedical Engin
  • Truffinet P; From the University of Lille, INSERM Unité 1172, Lille Neuroscience and Cognition, Lille University Hospital, University Hospital Federation Precise, Lille (P.V.), and Sanofi, Chilly-Mazarin (S.S., R.B., P.T.) - both in France; Translational Imaging in Neurology Basel, Department of Biomedical Engin
  • Djukic B; From the University of Lille, INSERM Unité 1172, Lille Neuroscience and Cognition, Lille University Hospital, University Hospital Federation Precise, Lille (P.V.), and Sanofi, Chilly-Mazarin (S.S., R.B., P.T.) - both in France; Translational Imaging in Neurology Basel, Department of Biomedical Engin
  • Wallstroem E; From the University of Lille, INSERM Unité 1172, Lille Neuroscience and Cognition, Lille University Hospital, University Hospital Federation Precise, Lille (P.V.), and Sanofi, Chilly-Mazarin (S.S., R.B., P.T.) - both in France; Translational Imaging in Neurology Basel, Department of Biomedical Engin
  • Giovannoni G; From the University of Lille, INSERM Unité 1172, Lille Neuroscience and Cognition, Lille University Hospital, University Hospital Federation Precise, Lille (P.V.), and Sanofi, Chilly-Mazarin (S.S., R.B., P.T.) - both in France; Translational Imaging in Neurology Basel, Department of Biomedical Engin
N Engl J Med ; 390(7): 589-600, 2024 Feb 15.
Article em En | MEDLINE | ID: mdl-38354138
ABSTRACT

BACKGROUND:

The CD40-CD40L costimulatory pathway regulates adaptive and innate immune responses and has been implicated in the pathogenesis of multiple sclerosis. Frexalimab is a second-generation anti-CD40L monoclonal antibody being evaluated for the treatment of multiple sclerosis.

METHODS:

In this phase 2, double-blind, randomized trial, we assigned, in a 4411 ratio, participants with relapsing multiple sclerosis to receive 1200 mg of frexalimab administered intravenously every 4 weeks (with an 1800-mg loading dose), 300 mg of frexalimab administered subcutaneously every 2 weeks (with a 600-mg loading dose), or the matching placebos for each active treatment. The primary end point was the number of new gadolinium-enhancing T1-weighted lesions seen on magnetic resonance imaging at week 12 relative to week 8. Secondary end points included the number of new or enlarging T2-weighted lesions at week 12 relative to week 8, the total number of gadolinium-enhancing T1-weighted lesions at week 12, and safety. After 12 weeks, all the participants could receive open-label frexalimab.

RESULTS:

Of 166 participants screened, 129 were assigned to a trial group; 125 participants (97%) completed the 12-week double-blind period. The mean age of the participants was 36.6 years, 66% were women, and 30% had gadolinium-enhancing lesions at baseline. At week 12, the adjusted mean number of new gadolinium-enhancing T1-weighted lesions was 0.2 (95% confidence interval [CI], 0.1 to 0.4) in the group that received 1200 mg of frexalimab intravenously and 0.3 (95% CI, 0.1 to 0.6) in the group that received 300 mg of frexalimab subcutaneously, as compared with 1.4 (95% CI, 0.6 to 3.0) in the pooled placebo group. The rate ratios as compared with placebo were 0.11 (95% CI, 0.03 to 0.38) in the 1200-mg group and 0.21 (95% CI, 0.08 to 0.56) in the 300-mg group. Results for the secondary imaging end points were generally in the same direction as those for the primary analysis. The most common adverse events were coronavirus disease 2019 and headaches.

CONCLUSIONS:

In a phase 2 trial involving participants with multiple sclerosis, inhibition of CD40L with frexalimab had an effect that generally favored a greater reduction in the number of new gadolinium-enhancing T1-weighted lesions at week 12 as compared with placebo. Larger and longer trials are needed to determine the long-term efficacy and safety of frexalimab in persons with multiple sclerosis. (Funded by Sanofi; ClinicalTrials.gov number, NCT04879628.).
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Antígenos CD40 / Esclerose Múltipla Recidivante-Remitente / Ligante de CD40 / Anticorpos Monoclonais Tipo de estudo: Clinical_trials Limite: Adult / Female / Humans / Male Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Antígenos CD40 / Esclerose Múltipla Recidivante-Remitente / Ligante de CD40 / Anticorpos Monoclonais Tipo de estudo: Clinical_trials Limite: Adult / Female / Humans / Male Idioma: En Ano de publicação: 2024 Tipo de documento: Article