Your browser doesn't support javascript.
loading
Changes in adiponectin system after ventricular assist device in pediatric heart failure.
Ragusa, Rosetta; Di Molfetta, Arianna; Mercatanti, Alberto; Pitto, Letizia; Amodeo, Antonio; Trivella, Maria Giovanna; Rizzo, Milena; Caselli, Chiara.
Afiliação
  • Ragusa R; Institute of Clinical Physiology, CNR, Pisa, Italy.
  • Di Molfetta A; Department of Cardiothoracic Surgery, Ospedale Pediatrico Bambino Gesù, Rome, Italy.
  • Mercatanti A; Institute of Clinical Physiology, CNR, Pisa, Italy.
  • Pitto L; Institute of Clinical Physiology, CNR, Pisa, Italy.
  • Amodeo A; Department of Cardiothoracic Surgery, Ospedale Pediatrico Bambino Gesù, Rome, Italy.
  • Trivella MG; Institute of Clinical Physiology, CNR, Pisa, Italy.
  • Rizzo M; Institute of Clinical Physiology, CNR, Pisa, Italy.
  • Caselli C; Institute of Clinical Physiology, CNR, Pisa, Italy.
JHLT Open ; 3: None, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38357297
ABSTRACT

Background:

Ventricular assist device (VAD) implant represents a therapeutic option for pediatric patients with end-stage heart failure (HF). Heart unloading by VAD can modify several molecular pathways underlying cardiac function in HF. Among them, the potential role of microRNA (miRNAs) in response to VAD implant is emerging. This study was aimed at investigating in HF pediatric patients the effect of VAD-modified miRNAs on the adiponectin (ADPN) system, known to exert cardioprotective actions.

Methods:

ADPN was measured in plasma samples obtained from HF children, before and 1 month after VAD implant, and from healthy control children. miRNA profile and molecules belonging to ADPN system were determined in cardiac biopsies collected at the time of VAD implantation (pre-VAD) and at the moment of heart transplant (post-VAD). An in vitro study using HL-1 cell line was performed to verify the regulatory role of the VAD-modified miRNA on the ADPN system.

Results:

VAD implant did not affect circulating and cardiac levels of ADPN, but increased the cardiac mRNA expression of ADPN receptors, including AdipoR1, AdipoR2, and T-cad. AdipoR2 and T-cad were inversely related to the VAD-modified miRNA levels. The in vitro study confirmed the regulatory role of miR-1246 and miR-199b-5p on AdipoR2, and of miR-199b-5p on T-cad.

Conclusions:

These data suggest that VAD treatment could regulate the expression of the cardioprotective ADPN system by epigenetic mediators, suggesting that miRNAs have a potential role as therapeutic targets to improve cardiac function in HF pediatric patients.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article