Your browser doesn't support javascript.
loading
FARS2 Deficiency Causes Cardiomyopathy by Disrupting Mitochondrial Homeostasis and the Mitochondrial Quality Control System.
Li, Bowen; Liu, Fangfang; Chen, Xihui; Chen, Tangdong; Zhang, Juan; Liu, Yifeng; Yao, Yan; Hu, Weihong; Zhang, Mengjie; Wang, Bo; Liu, Liwen; Chen, Kun; Wu, Yuanming.
Afiliação
  • Li B; Department of Biochemistry and Molecular Biology, Shaanxi Provincial Key Laboratory of Clinical Genetics (B.L., X.C., T.C., J.Z., Y.L., Y.Y., W.H., M.Z., Y.W.), Air Force Medical University, Xi'an, China.
  • Liu F; Department of Neurobiology (F.L.), Air Force Medical University, Xi'an, China.
  • Chen X; Department of Biochemistry and Molecular Biology, Shaanxi Provincial Key Laboratory of Clinical Genetics (B.L., X.C., T.C., J.Z., Y.L., Y.Y., W.H., M.Z., Y.W.), Air Force Medical University, Xi'an, China.
  • Chen T; Department of Biochemistry and Molecular Biology, Shaanxi Provincial Key Laboratory of Clinical Genetics (B.L., X.C., T.C., J.Z., Y.L., Y.Y., W.H., M.Z., Y.W.), Air Force Medical University, Xi'an, China.
  • Zhang J; Department of Biochemistry and Molecular Biology, Shaanxi Provincial Key Laboratory of Clinical Genetics (B.L., X.C., T.C., J.Z., Y.L., Y.Y., W.H., M.Z., Y.W.), Air Force Medical University, Xi'an, China.
  • Liu Y; Department of Biochemistry and Molecular Biology, Shaanxi Provincial Key Laboratory of Clinical Genetics (B.L., X.C., T.C., J.Z., Y.L., Y.Y., W.H., M.Z., Y.W.), Air Force Medical University, Xi'an, China.
  • Yao Y; Department of Biochemistry and Molecular Biology, Shaanxi Provincial Key Laboratory of Clinical Genetics (B.L., X.C., T.C., J.Z., Y.L., Y.Y., W.H., M.Z., Y.W.), Air Force Medical University, Xi'an, China.
  • Hu W; Department of Biochemistry and Molecular Biology, Shaanxi Provincial Key Laboratory of Clinical Genetics (B.L., X.C., T.C., J.Z., Y.L., Y.Y., W.H., M.Z., Y.W.), Air Force Medical University, Xi'an, China.
  • Zhang M; Department of Biochemistry and Molecular Biology, Shaanxi Provincial Key Laboratory of Clinical Genetics (B.L., X.C., T.C., J.Z., Y.L., Y.Y., W.H., M.Z., Y.W.), Air Force Medical University, Xi'an, China.
  • Wang B; School of Basic Medicine, Department of Ultrasound, Xijing Hypertrophic Cardiomyopathy Center, Xijing Hospital (B.W., L.L.), Air Force Medical University, Xi'an, China.
  • Liu L; School of Basic Medicine, Department of Ultrasound, Xijing Hypertrophic Cardiomyopathy Center, Xijing Hospital (B.W., L.L.), Air Force Medical University, Xi'an, China.
  • Chen K; Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Center (K.C.), Air Force Medical University, Xi'an, China.
  • Wu Y; Department of Biochemistry and Molecular Biology, Shaanxi Provincial Key Laboratory of Clinical Genetics (B.L., X.C., T.C., J.Z., Y.L., Y.Y., W.H., M.Z., Y.W.), Air Force Medical University, Xi'an, China.
Circulation ; 149(16): 1268-1284, 2024 Apr 16.
Article em En | MEDLINE | ID: mdl-38362779
ABSTRACT

BACKGROUND:

Hypertrophic cardiomyopathy (HCM) is a common heritable heart disease. Although HCM has been reported to be associated with many variants of genes involved in sarcomeric protein biomechanics, pathogenic genes have not been identified in patients with partial HCM. FARS2 (the mitochondrial phenylalanyl-tRNA synthetase), a type of mitochondrial aminoacyl-tRNA synthetase, plays a role in the mitochondrial translation machinery. Several variants of FARS2 have been suggested to cause neurological disorders; however, FARS2-associated diseases involving other organs have not been reported. We identified FARS2 as a potential novel pathogenic gene in cardiomyopathy and investigated its effects on mitochondrial homeostasis and the cardiomyopathy phenotype.

METHODS:

FARS2 variants in patients with HCM were identified using whole-exome sequencing, Sanger sequencing, molecular docking analyses, and cell model investigation. Fars2 conditional mutant (p.R415L) or knockout mice, fars2-knockdown zebrafish, and Fars2-knockdown neonatal rat ventricular myocytes were engineered to construct FARS2 deficiency models both in vivo and in vitro. The effects of FARS2 and its role in mitochondrial homeostasis were subsequently evaluated using RNA sequencing and mitochondrial functional analyses. Myocardial tissues from patients were used for further verification.

RESULTS:

We identified 7 unreported FARS2 variants in patients with HCM. Heart-specific Fars2-deficient mice presented cardiac hypertrophy, left ventricular dilation, progressive heart failure accompanied by myocardial and mitochondrial dysfunction, and a short life span. Heterozygous cardiac-specific Fars2R415L mice displayed a tendency to cardiac hypertrophy at age 4 weeks, accompanied by myocardial dysfunction. In addition, fars2-knockdown zebrafish presented pericardial edema and heart failure. FARS2 deficiency impaired mitochondrial homeostasis by directly blocking the aminoacylation of mt-tRNAPhe and inhibiting the synthesis of mitochondrial proteins, ultimately contributing to an imbalanced mitochondrial quality control system by accelerating mitochondrial hyperfragmentation and disrupting mitochondrion-related autophagy. Interfering with the mitochondrial quality control system using adeno-associated virus 9 or specific inhibitors mitigated the cardiac and mitochondrial dysfunction triggered by FARS2 deficiency by restoring mitochondrial homeostasis.

CONCLUSIONS:

Our findings unveil the previously unrecognized role of FARS2 in heart and mitochondrial homeostasis. This study may provide new insights into the molecular diagnosis and prevention of heritable cardiomyopathy as well as therapeutic options for FARS2-associated cardiomyopathy.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fenilalanina-tRNA Ligase / Cardiomiopatia Hipertrófica / Doenças Mitocondriais / Insuficiência Cardíaca Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Animals / Humans / Newborn Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fenilalanina-tRNA Ligase / Cardiomiopatia Hipertrófica / Doenças Mitocondriais / Insuficiência Cardíaca Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Animals / Humans / Newborn Idioma: En Ano de publicação: 2024 Tipo de documento: Article