Your browser doesn't support javascript.
loading
Challenges and perspectives in computational deconvolution of genomics data.
Garmire, Lana X; Li, Yijun; Huang, Qianhui; Xu, Chuan; Teichmann, Sarah A; Kaminski, Naftali; Pellegrini, Matteo; Nguyen, Quan; Teschendorff, Andrew E.
Afiliação
  • Garmire LX; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA. lgarmire@med.umich.edu.
  • Li Y; Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
  • Huang Q; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
  • Xu C; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
  • Teichmann SA; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
  • Kaminski N; Pulmonary, Critical Care & Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA.
  • Pellegrini M; Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA.
  • Nguyen Q; Institute for Molecular Bioscience, The University of Queensland and QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
  • Teschendorff AE; CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
Nat Methods ; 21(3): 391-400, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38374264
ABSTRACT
Deciphering cell-type heterogeneity is crucial for systematically understanding tissue homeostasis and its dysregulation in diseases. Computational deconvolution is an efficient approach for estimating cell-type abundances from a variety of omics data. Despite substantial methodological progress in computational deconvolution in recent years, challenges are still outstanding. Here we enlist four important challenges related to computational deconvolution the quality of the reference data, generation of ground truth data, limitations of computational methodologies, and benchmarking design and implementation. Finally, we make recommendations on reference data generation, new directions of computational methodologies, and strategies to promote rigorous benchmarking.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Biologia Computacional / Genômica Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Biologia Computacional / Genômica Idioma: En Ano de publicação: 2024 Tipo de documento: Article