Your browser doesn't support javascript.
loading
Superhydrophilic Dendritic FeP/Cu3P Electrocatalyst for Urea Splitting via the Intramolecular Mechanism.
Li, Fang; Cao, Jing; Yu, Huiqin; Lin, Haili; Chen, Shifu.
Afiliação
  • Li F; Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, P. R. China.
  • Cao J; Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, P. R. China.
  • Yu H; Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, P. R. China.
  • Lin H; Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, P. R. China.
  • Chen S; Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, P. R. China.
Inorg Chem ; 63(9): 4204-4213, 2024 Mar 04.
Article em En | MEDLINE | ID: mdl-38386868
ABSTRACT
The electrocatalytic overall urea splitting can achieve the dual goals of urea treatment and hydrogen energy acquisition. Herein, we exploited the principle of precipitation dissolution equilibrium to obtain bimetallic phosphide FeP/Cu3P/CF for the simultaneous oxidation of urea and reduction of water and comprehensively reveal the inherent molecular thermodynamic mechanisms on the surface of catalysts. The excellent electrochemical performance can be derived from the super water affinity and synergistic effect. Especially, the theoretical calculation unveils that the synergistic effect between FeP and Cu3P can lower the activation energy required for urea electrooxidation, thereby promoting urea splitting. In situ differential electrochemical mass spectrometry (in situ DEMS) measurements further demonstrated that urea oxidation on FeP/Cu3P/CF proceeded according to the intramolecular mechanism. This work has laid the foundation for constructing highly efficient superhydrophilic bifunctional electrocatalysts.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article