Your browser doesn't support javascript.
loading
Transport and transformations of cadmium in water-biofilm-sediment phases as affected by hydrodynamic conditions.
Zhu, Shijun; Zhang, Zixiang; Wen, Chen; Zhu, Shiqi; Li, Chunyan; Xu, Hansen; Luo, Xia.
Afiliação
  • Zhu S; Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China.
  • Zhang Z; Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China.
  • Wen C; Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China.
  • Zhu S; Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China.
  • Li C; Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China.
  • Xu H; Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China.
  • Luo X; Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China. Electronic address: luoxia@ynu.edu.cn.
J Environ Manage ; 354: 120368, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38394874
ABSTRACT
Hydrodynamic conditions play a crucial role in governing the fate, transport, and risks of metal elements. However, the contribution of hydrodynamic conditions to the fate and transport of heavy metals among water, sediment, and biofilm phases is poorly understood. In our study, we conducted experiments in controlled hydrodynamic conditions using a total of 6 two-phase and 9 three-phase mesocosms consisting of water, biofilm, and sediment. We also measured Cd (cadmium) specification in different phases to assess how hydrodynamic forces control Cd bioavailability. We found that turbulent flow destroyed the surface morphology of the biofilm and significantly decreased the content of extracellular polymeric substances (p < 0.05). This led to a decrease in the biofilm's adsorption capacity for Cd, with the maximum adsorption capacity (0.124 mg/g) being one-tenth of that under static conditions (1.256 mg/g). The Cd chemical forms in the biofilm and sediment were significantly different, with the highest amount of Cd in the biofilm being acid-exchangeable, accounting for up to 95.1% of the total Cd content. Cd was more easily released in the biofilm due to its weak binding state, while Cd in the sediment existed in more stable chemical forms. Hydrodynamic conditions altered the migration behavior and distribution characteristics of Cd in the system by changing the adsorption capacity of the biofilm and sediment for Cd. Cd mobility increased in laminar flow but decreased in turbulent flow. These results enhance our understanding of the underlying mechanisms that control the mobility and bioavailability of metals in aquatic environments with varying hydrodynamic conditions.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Metais Pesados Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Metais Pesados Idioma: En Ano de publicação: 2024 Tipo de documento: Article