Your browser doesn't support javascript.
loading
Lightweight and Strong Cellulosic Triboelectric Materials Enabled by Cell Wall Nanoengineering.
Li, Xiuzhen; Wang, Jinlong; Liu, Yanhua; Zhao, Tong; Luo, Bin; Liu, Tao; Zhang, Song; Chi, Mingchao; Cai, Chenchen; Wei, Zhiting; Zhang, Puyang; Wang, Shuangfei; Nie, Shuangxi.
Afiliação
  • Li X; School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China.
  • Wang J; School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China.
  • Liu Y; School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China.
  • Zhao T; School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China.
  • Luo B; School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China.
  • Liu T; School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China.
  • Zhang S; School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China.
  • Chi M; School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China.
  • Cai C; School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China.
  • Wei Z; School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China.
  • Zhang P; School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China.
  • Wang S; School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China.
  • Nie S; School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China.
Nano Lett ; 24(10): 3273-3281, 2024 Mar 13.
Article em En | MEDLINE | ID: mdl-38427598
ABSTRACT
As intelligent technology surges forward, wearable electronics have emerged as versatile tools for monitoring health and sensing our surroundings. Among these advancements, porous triboelectric materials have garnered significant attention for their lightness. However, these materials face the challenge of improving structural stability to further enhance the sensing accuracy of triboelectric sensors. In this study, a lightweight and strong porous cellulosic triboelectric material is designed by cell wall nanoengineering. By tailoring of the cell wall structure, the material shows a high mechanical strength of 51.8 MPa. The self-powered sensor constructed by this material has a high sensitivity of 33.61 kPa-1, a fast response time of 36 ms, and excellent pressure detection durability. Notably, the sensor still enables a high sensing performance after the porous cellulosic triboelectric material exposure to 200 °C and achieves real-time feedback of human motion, thereby demonstrating great potential in the field of wearable electronic devices.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Parede Celular / Dispositivos Eletrônicos Vestíveis Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Parede Celular / Dispositivos Eletrônicos Vestíveis Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article