Unveiling the effect of different dissolved organic matter (DOM) on catalytic dechlorination of nFe/Ni particles: Corrosion and passivation effect.
J Hazard Mater
; 469: 133901, 2024 May 05.
Article
em En
| MEDLINE
| ID: mdl-38430602
ABSTRACT
Dissolved organic matter (DOM), which is ubiquitously distributed in groundwater, has a crucial role in the fate and reactivity of iron materials. However, there is a lack of direct evidence on how different DOMs interact with nFe/Ni in promoting or inhibiting the dechlorination efficiency of chlorinated aromatic contaminants. By comparing humic acid (HA), fulvic acid (FA), and biochar-derived dissolved organic matter (BDOM) at different pyrolysis temperatures, we first demonstrated that the dechlorination effect of nFe/Ni on 2,4-dichlorophenol (2,4-DCP) depended on the nature of DOMs and their adsorption on nFe/Ni. HA showed an enhancing effect on the dechlorination of 2,4-DCP by nFe/Ni, while the inhibition effect of other DOMs resulted in the following dechlorination order BDOM300 ≈FA>BDOM700 ≈BDOM500. The C2 component with higher aromaticity and molecular weight promoted the corrosion of nFe/Ni and the production of reactive hydrogen atoms (H*). The effects of different DOMs on nFe/Ni include that (1) HA accelerates the corrosion and H* production of nFe/Ni, (2) FA and BDOM300 enhance the corrosion but inhibit H* production, and (3) Both nFe/Ni corrosion and H* formation are suppressed by BDOM500/BDOM700. Therefore, this study will provide a reference for understanding the nature of DOM-nFe/Ni interaction and improving the catalytic activity of nFe/Ni when different DOMs coexist in practical applications.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article