Genome-scale requirements for dynein-based transport revealed by a high-content arrayed CRISPR screen.
J Cell Biol
; 223(5)2024 05 06.
Article
em En
| MEDLINE
| ID: mdl-38448164
ABSTRACT
The microtubule motor dynein plays a key role in cellular organization. However, little is known about how dynein's biosynthesis, assembly, and functional diversity are orchestrated. To address this issue, we have conducted an arrayed CRISPR loss-of-function screen in human cells using the distribution of dynein-tethered peroxisomes and early endosomes as readouts. From a genome-wide gRNA library, 195 validated hits were recovered and parsed into those impacting multiple dynein cargoes and those whose effects are restricted to a subset of cargoes. Clustering of high-dimensional phenotypic fingerprints revealed co-functional proteins involved in many cellular processes, including several candidate novel regulators of core dynein functions. Further analysis of one of these factors, the RNA-binding protein SUGP1, indicates that it promotes cargo trafficking by sustaining functional expression of the dynein activator LIS1. Our data represent a rich source of new hypotheses for investigating microtubule-based transport, as well as several other aspects of cellular organization captured by our high-content imaging.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Dineínas
/
Microtúbulos
Limite:
Humans
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article