Your browser doesn't support javascript.
loading
Improving management of febrile neutropenia in oncology patients: the role of artificial intelligence and machine learning.
Gallardo-Pizarro, Antonio; Peyrony, Olivier; Chumbita, Mariana; Monzo-Gallo, Patricia; Aiello, Tommaso Francesco; Teijon-Lumbreras, Christian; Gras, Emmanuelle; Mensa, Josep; Soriano, Alex; Garcia-Vidal, Carolina.
Afiliação
  • Gallardo-Pizarro A; Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain.
  • Peyrony O; Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain.
  • Chumbita M; Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain.
  • Monzo-Gallo P; Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain.
  • Aiello TF; Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain.
  • Teijon-Lumbreras C; Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain.
  • Gras E; Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain.
  • Mensa J; Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain.
  • Soriano A; Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain.
  • Garcia-Vidal C; Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain.
Expert Rev Anti Infect Ther ; 22(4): 179-187, 2024 Apr.
Article em En | MEDLINE | ID: mdl-38457198
ABSTRACT

INTRODUCTION:

Artificial intelligence (AI) and machine learning (ML) have the potential to revolutionize the management of febrile neutropenia (FN) and drive progress toward personalized medicine. AREAS COVERED In this review, we detail how the collection of a large number of high-quality data can be used to conduct precise mathematical studies with ML and AI. We explain the foundations of these techniques, covering the fundamentals of supervised and unsupervised learning, as well as the most important challenges, e.g. data quality, 'black box' model interpretation and overfitting. To conclude, we provide detailed examples of how AI and ML have been used to enhance predictions of chemotherapy-induced FN, detection of bloodstream infections (BSIs) and multidrug-resistant (MDR) bacteria, and anticipation of severe complications and mortality. EXPERT OPINION There is promising potential of implementing accurate AI and ML models whilst managing FN. However, their integration as viable clinical tools poses challenges, including technical and implementation barriers. Improving global accessibility, fostering interdisciplinary collaboration, and addressing ethical and security considerations are essential. By overcoming these challenges, we could transform personalized care for patients with FN.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neutropenia Febril Induzida por Quimioterapia / Neoplasias Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neutropenia Febril Induzida por Quimioterapia / Neoplasias Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article