Your browser doesn't support javascript.
loading
A voltage-based Event-Timing-Dependent Plasticity rule accounts for LTP subthreshold and suprathreshold for dendritic spikes in CA1 pyramidal neurons.
Tomko, Matus; Benuskova, Lubica; Jedlicka, Peter.
Afiliação
  • Tomko M; Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 840 05, Slovakia. matus.tomko@savba.sk.
  • Benuskova L; Faculty of Medicine, Institute of Medical Physics and Biophysics, Comenius University Bratislava, Bratislava, Slovakia. matus.tomko@savba.sk.
  • Jedlicka P; Faculty of Mathematics, Physics and Informatics, Centre for Cognitive Science, Department of Applied Informatics, Comenius University Bratislava, Bratislava, Slovakia.
J Comput Neurosci ; 52(2): 125-131, 2024 May.
Article em En | MEDLINE | ID: mdl-38470534
ABSTRACT
Long-term potentiation (LTP) is a synaptic mechanism involved in learning and memory. Experiments have shown that dendritic sodium spikes (Na-dSpikes) are required for LTP in the distal apical dendrites of CA1 pyramidal cells. On the other hand, LTP in perisomatic dendrites can be induced by synaptic input patterns that can be both subthreshold and suprathreshold for Na-dSpikes. It is unclear whether these results can be explained by one unifying plasticity mechanism. Here, we show in biophysically and morphologically realistic compartmental models of the CA1 pyramidal cell that these forms of LTP can be fully accounted for by a simple plasticity rule. We call it the voltage-based Event-Timing-Dependent Plasticity (ETDP) rule. The presynaptic event is the presynaptic spike or release of glutamate. The postsynaptic event is the local depolarization that exceeds a certain plasticity threshold. Our model reproduced the experimentally observed LTP in a variety of protocols, including local pharmacological inhibition of dendritic spikes by tetrodotoxin (TTX). In summary, we have provided a validation of the voltage-based ETDP, suggesting that this simple plasticity rule can be used to model even complex spatiotemporal patterns of long-term synaptic plasticity in neuronal dendrites.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Potenciais de Ação / Células Piramidais / Potenciação de Longa Duração / Dendritos / Região CA1 Hipocampal / Modelos Neurológicos Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Potenciais de Ação / Células Piramidais / Potenciação de Longa Duração / Dendritos / Região CA1 Hipocampal / Modelos Neurológicos Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article