Your browser doesn't support javascript.
loading
Anti-fogging/dry-dust transparent superhydrophobic surfaces based on liquid-like molecule brush modified nanofiber cluster structures.
Dou, Yingying; Wu, Chengjiao; Fan, Yue; Wang, Yingke; Sun, Zhe; Huang, Shilin; Yang, Yabin; Tian, Xuelin.
Afiliação
  • Dou Y; State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic
  • Wu C; State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic
  • Fan Y; State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic
  • Wang Y; State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic
  • Sun Z; State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic
  • Huang S; State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic
  • Yang Y; State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic
  • Tian X; State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic
J Colloid Interface Sci ; 664: 727-735, 2024 Jun 15.
Article em En | MEDLINE | ID: mdl-38492374
ABSTRACT
Transparent protective coatings capable of preventing fog and dust accumulation have broad application prospect in photovoltaic systems, optical devices and consumer electronics. Although a number of superhydrophobic coatings have been developed for self-cleaning purpose over the past three decades, there is still a lack of surfaces that can simultaneously possess high transparency, remarkable superhydrophobicity, and excellent fog and dust resistance. In this study, we have prepared surfaces featuring sub-wavelength nanofiber cluster structures through a facile plasma etching method, and further modified the surface with liquid-like perfluoropolyether (PFPE) brushes. The prepared PFPE modified nanofibrous surface (PFPE-NS) exhibits superior optical transparency (transmittance 90.4 % ± 0.7 %) and water repellency, with a water contact angle as high as 171.0° ± 0.6° and sliding angle down to 0.5° ± 0.1° (5 µL). More importantly, benefitted from the nanofiber cluster structures and the slippery liquid-like surface chemistry, the adhesion and accumulation of fog droplets and dust particles on PFPE-NS is greatly inhibited. As a consequence, PFPE-NS can keep excellent optical clearness after 2 h fogging test and maintain an average transmittance above 87 % after 24 h dusting test. Our study provides a promising strategy through constructing liquid-like nanofibrous coating for optical protection that could be applicable in practical rainy, foggy, and dusty environments.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article