Your browser doesn't support javascript.
loading
Cryptic piperazine derivatives activated by knocking out the global regulator LaeA in Aspergillus flavipes.
Liu, Yaping; Li, Pengkun; Qi, Changxing; Zha, Ziou; Meng, Jie; Liu, Chang; Han, Jiapei; Zhou, Qun; Luo, Zengwei; Wang, Jianping; Zhu, Hucheng; Ye, Ying; Chen, Chunmei; Zhou, Yuan; Zhang, Yonghui.
Afiliação
  • Liu Y; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
  • Li P; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
  • Qi C; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
  • Zha Z; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
  • Meng J; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
  • Liu C; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
  • Han J; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
  • Zhou Q; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
  • Luo Z; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
  • Wang J; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
  • Zhu H; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
  • Ye Y; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
  • Chen C; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China. Electronic address: chenchunmei@hust.edu.cn.
  • Zhou Y; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China. Electronic address: zhouyuan@hust.edu.cn.
  • Zhang Y; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China. Electronic address: zhangyh@mails.tjmu.edu.cn.
Bioorg Med Chem ; 103: 117685, 2024 Apr 01.
Article em En | MEDLINE | ID: mdl-38503009
ABSTRACT
Genome sequencing on an intertidal zone-derived Aspergillus flavipes strain revealed its great potential to produce secondary metabolites. To activate the cryptic compounds of A. flavipes, the global regulator flLaeA was knocked out, leading to substantial up-regulation of the expression of two NRPS-like biosynthetic gene clusters in the ΔflLaeA mutant. With a scaled-up fermentation of the ΔflLaeA strain, five compounds, including two previously undescribed piperazine derivatives flavipamides A and B (1 and 2), along with three known compounds (3-5), were obtained by LC-MS guided isolation. The new compounds were elucidated by spectroscopic analysis and electronic circular dichroism (ECD) calculations, and the biosynthetic pathway was proposed on the bias of bioinformatic analysis and 13C isotope labeling evidence. This is the first report to access cryptic fungi secondary metabolites by inactivating global regulator LaeA and may provide a new approach to discovering new secondary metabolites by such genetic manipulation.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Aspergillus / Fungos Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Aspergillus / Fungos Idioma: En Ano de publicação: 2024 Tipo de documento: Article