Correlation analysis and predicting modeling of pyrolysis gas based on landfill excavated waste pyrolysis characteristics.
Chemosphere
; 354: 141740, 2024 Apr.
Article
em En
| MEDLINE
| ID: mdl-38508460
ABSTRACT
The contribution of excavated waste to waste management is multifaceted, including minimization, non-hazardous disposal, access to useable land resources, improved waste management techniques and public environmental awareness, consistent with recent circular economy initiatives. Pyrolysis can be converted into tar, pyrolysis gas and char with recyclable utilization, enriching the application of pyrolysis technology in the field of excavation waste. In this study, the pyrolysis system includes horizontal tube furnace, gas collection device and Micro GC. The excavated waste was pyrolyzed at a temperature of 500â¼900 °C with a heating rate of 10 °C/min. Pyrolysis gases include H2, CO, CO2, CH4, C2H4, C2H6 and C3H8. Pyrolysis was divided into four stages, the main decomposition range is 230â¼500 °C, with a weight loss rate of 68.49% and a co-pyrolysis behavior. As the temperature increases, the tar and char decreased and the gas production increased significantly, and the pyrolysis gas reached 47.02% at 900 °C. According to Pearson correlation coefficient analysis, the generation of H2 and CO is positively correlated with temperature. Therefore, the target products can be influenced by changing the parameters, when considering the practical utilization of the excavated waste pyrolysis products. On this basis, the prediction models were built by polynomial fitting method. This model can reduce the experimental exploration cycle, reduce the cost, and accurately predict the pyrolysis gas, which has practical guidance for the application of pyrolysis industry, and provides a theoretical basis for the resource recycling and energy recovery of landfill.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Pirólise
/
Gerenciamento de Resíduos
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article