Your browser doesn't support javascript.
loading
The features associated with mammography-occult MRI-detected newly diagnosed breast cancer analysed by comparing machine learning models with a logistic regression model.
Yang, Wei; Yang, Yan; Zhang, Ningmei; Yin, Qingyun; Zhang, Chaolin; Han, Jinyu; Zhou, Xiaoping; Liu, Kaihui.
Afiliação
  • Yang W; Department of Radiology, General Hospital of Ningxia Medical University, 804 Shengli Road, Yinchuan, 750004, People's Republic of China. yangwei_0521@163.com.
  • Yang Y; Information Technology Center, 32752 Troop, Xiangyang, 441000, People's Republic of China.
  • Zhang N; Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli Road, Yinchuan, 750004, People's Republic of China.
  • Yin Q; Department of Medical Oncology, General Hospital of Ningxia Medical University, 804 Shengli Road, Yinchuan, 750004, People's Republic of China.
  • Zhang C; Department of Surgical Oncology, General Hospital of Ningxia Medical University, 804 Shengli Road, Yinchuan, 750004, People's Republic of China.
  • Han J; Department of Radiology, General Hospital of Ningxia Medical University, 804 Shengli Road, Yinchuan, 750004, People's Republic of China.
  • Zhou X; College of Clinical Medicine, Ningxia Medical University, 692 Shengli Road, Yinchuan, 750004, People's Republic of China.
  • Liu K; College of Clinical Medicine, Ningxia Medical University, 692 Shengli Road, Yinchuan, 750004, People's Republic of China.
Radiol Med ; 129(5): 751-766, 2024 May.
Article em En | MEDLINE | ID: mdl-38512623
ABSTRACT

PURPOSE:

To compare machine learning (ML) models with logistic regression model in order to identify the optimal factors associated with mammography-occult (i.e. false-negative mammographic findings) magnetic resonance imaging (MRI)-detected newly diagnosed breast cancer (BC). MATERIAL AND

METHODS:

The present single-centre retrospective study included consecutive women with BC who underwent mammography and MRI (no more than 45 days apart) for breast cancer between January 2018 and May 2023. Various ML algorithms and binary logistic regression analysis were utilized to extract features linked to mammography-occult BC. These features were subsequently employed to create different models. The predictive value of these models was assessed using receiver operating characteristic curve analysis.

RESULTS:

This study included 1957 malignant lesions from 1914 patients, with an average age of 51.64 ± 9.92 years and a range of 20-86 years. Among these lesions, there were 485 mammography-occult BCs. The optimal features of mammography-occult BC included calcification status, tumour size, mammographic density, age, lesion enhancement type on MRI, and histological type. Among the different ML models (ANN, L1-LR, RF, and SVM) and the LR-based combined model, the ANN model with RF features was found to be the optimal model. It demonstrated the best discriminative performance in predicting mammography false- negative findings, with an AUC of 0.912, an accuracy of 86.90%, a sensitivity of 85.85%, and a specificity of 84.18%.

CONCLUSION:

Mammography-occult MRI-detected breast cancers have features that should be considered when performing breast MRI to improve the detection rate for breast cancer and aid in clinician management.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Imageamento por Ressonância Magnética / Mamografia / Aprendizado de Máquina Limite: Adult / Aged / Aged80 / Female / Humans / Middle aged Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Imageamento por Ressonância Magnética / Mamografia / Aprendizado de Máquina Limite: Adult / Aged / Aged80 / Female / Humans / Middle aged Idioma: En Ano de publicação: 2024 Tipo de documento: Article