Your browser doesn't support javascript.
loading
Modelling science return from the lunar crater radio telescope on the far side of the moon.
Pisanti, Dario; Goel, Ashish; Gupta, Gaurangi; Arya, Manan; Byron, Benjamin; Chahat, Nacer; Lazio, Joseph; Goldsmith, Paul; Bandyopadhyay, Saptarshi.
Afiliação
  • Pisanti D; Scuola Superiore Meridionale, Naples 80138, Italy.
  • Goel A; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91101, USA.
  • Gupta G; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91101, USA.
  • Arya M; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91101, USA.
  • Byron B; Stanford University, Stanford, CA 94305, USA.
  • Chahat N; University of Central Florida, FL 32816, USA.
  • Lazio J; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91101, USA.
  • Goldsmith P; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91101, USA.
  • Bandyopadhyay S; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91101, USA.
Philos Trans A Math Phys Eng Sci ; 382(2271): 20230073, 2024 May 09.
Article em En | MEDLINE | ID: mdl-38522463
ABSTRACT
The era following the separation of CMB photons from matter, until the emergence of the first stars and galaxies, is known as the Cosmic Dark Ages. Studying the electromagnetic radiation emitted by neutral hydrogen having the 21 cm rest wavelength is the only way to explore this significant phase in the Universe's history, offering opportunities to investigate essential questions about dark matter physics, the standard cosmological model and inflation. Due to cosmological redshift, this signal is now only observable at frequencies inaccessible from the Earth's surface due to ionospheric absorption and reflection. With the Lunar Crater Radio Telescope (LCRT), we aim to conduct unprecedented measurements of the sky-averaged redshifted signal spectrum in the 4.7-47 MHz band, by deploying a 350 m diameter parabolic reflector mesh inside a lunar crater on the far side of the Moon and suspending a receiver at its focus. This work discusses the feasibility of the LCRT science goals through the development of a science model, with emphasis on post-processing techniques to extract the Dark Ages signal from the galactic foreground dominating the expected raw data. This model can be used to vary critical instrument and mission parameters to understand their effect on the quality of the retrieved signal. This article is part of a discussion meeting issue 'Astronomy from the Moon the next decades (part 2)'.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article