Your browser doesn't support javascript.
loading
Predicting and improving complex beer flavor through machine learning.
Schreurs, Michiel; Piampongsant, Supinya; Roncoroni, Miguel; Cool, Lloyd; Herrera-Malaver, Beatriz; Vanderaa, Christophe; Theßeling, Florian A; Kreft, Lukasz; Botzki, Alexander; Malcorps, Philippe; Daenen, Luk; Wenseleers, Tom; Verstrepen, Kevin J.
Afiliação
  • Schreurs M; VIB-KU Leuven Center for Microbiology, Gaston Geenslaan 1, B-3001, Leuven, Belgium.
  • Piampongsant S; CMPG Laboratory of Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001, Leuven, Belgium.
  • Roncoroni M; Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, B-3001, Leuven, Belgium.
  • Cool L; VIB-KU Leuven Center for Microbiology, Gaston Geenslaan 1, B-3001, Leuven, Belgium.
  • Herrera-Malaver B; CMPG Laboratory of Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001, Leuven, Belgium.
  • Vanderaa C; Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, B-3001, Leuven, Belgium.
  • Theßeling FA; VIB-KU Leuven Center for Microbiology, Gaston Geenslaan 1, B-3001, Leuven, Belgium.
  • Kreft L; CMPG Laboratory of Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001, Leuven, Belgium.
  • Botzki A; Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, B-3001, Leuven, Belgium.
  • Malcorps P; VIB-KU Leuven Center for Microbiology, Gaston Geenslaan 1, B-3001, Leuven, Belgium.
  • Daenen L; CMPG Laboratory of Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001, Leuven, Belgium.
  • Wenseleers T; Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, B-3001, Leuven, Belgium.
  • Verstrepen KJ; Laboratory of Socioecology and Social Evolution, KU Leuven, Naamsestraat 59, B-3000, Leuven, Belgium.
Nat Commun ; 15(1): 2368, 2024 Mar 26.
Article em En | MEDLINE | ID: mdl-38531860
ABSTRACT
The perception and appreciation of food flavor depends on many interacting chemical compounds and external factors, and therefore proves challenging to understand and predict. Here, we combine extensive chemical and sensory analyses of 250 different beers to train machine learning models that allow predicting flavor and consumer appreciation. For each beer, we measure over 200 chemical properties, perform quantitative descriptive sensory analysis with a trained tasting panel and map data from over 180,000 consumer reviews to train 10 different machine learning models. The best-performing algorithm, Gradient Boosting, yields models that significantly outperform predictions based on conventional statistics and accurately predict complex food features and consumer appreciation from chemical profiles. Model dissection allows identifying specific and unexpected compounds as drivers of beer flavor and appreciation. Adding these compounds results in variants of commercial alcoholic and non-alcoholic beers with improved consumer appreciation. Together, our study reveals how big data and machine learning uncover complex links between food chemistry, flavor and consumer perception, and lays the foundation to develop novel, tailored foods with superior flavors.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cerveja / Percepção Gustatória Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cerveja / Percepção Gustatória Idioma: En Ano de publicação: 2024 Tipo de documento: Article