Your browser doesn't support javascript.
loading
Controlling the helicity of light by electrical magnetization switching.
Dainone, Pambiang Abel; Prestes, Nicholas Figueiredo; Renucci, Pierre; Bouché, Alexandre; Morassi, Martina; Devaux, Xavier; Lindemann, Markus; George, Jean-Marie; Jaffrès, Henri; Lemaitre, Aristide; Xu, Bo; Stoffel, Mathieu; Chen, Tongxin; Lombez, Laurent; Lagarde, Delphine; Cong, Guangwei; Ma, Tianyi; Pigeat, Philippe; Vergnat, Michel; Rinnert, Hervé; Marie, Xavier; Han, Xiufeng; Mangin, Stephane; Rojas-Sánchez, Juan-Carlos; Wang, Jian-Ping; Beard, Matthew C; Gerhardt, Nils C; Zutic, Igor; Lu, Yuan.
Afiliação
  • Dainone PA; Institut Jean Lamour, Université de Lorraine, CNRS, UMR 7198, Nancy, France.
  • Prestes NF; Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, Palaiseau, France.
  • Renucci P; Université de Toulouse, INSA-CNRS-UPS, LPCNO, Toulouse, France.
  • Bouché A; Institut Jean Lamour, Université de Lorraine, CNRS, UMR 7198, Nancy, France.
  • Morassi M; Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France.
  • Devaux X; Institut Jean Lamour, Université de Lorraine, CNRS, UMR 7198, Nancy, France.
  • Lindemann M; Photonics and Terahertz Technology, Ruhr-Universität Bochum, Bochum, Germany.
  • George JM; Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, Palaiseau, France.
  • Jaffrès H; Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, Palaiseau, France.
  • Lemaitre A; Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France.
  • Xu B; Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China.
  • Stoffel M; College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China.
  • Chen T; Institut Jean Lamour, Université de Lorraine, CNRS, UMR 7198, Nancy, France.
  • Lombez L; Institut Jean Lamour, Université de Lorraine, CNRS, UMR 7198, Nancy, France.
  • Lagarde D; Université de Toulouse, INSA-CNRS-UPS, LPCNO, Toulouse, France.
  • Cong G; Université de Toulouse, INSA-CNRS-UPS, LPCNO, Toulouse, France.
  • Ma T; Platform Photonics Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.
  • Pigeat P; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
  • Vergnat M; Institut Jean Lamour, Université de Lorraine, CNRS, UMR 7198, Nancy, France.
  • Rinnert H; Institut Jean Lamour, Université de Lorraine, CNRS, UMR 7198, Nancy, France.
  • Marie X; Institut Jean Lamour, Université de Lorraine, CNRS, UMR 7198, Nancy, France.
  • Han X; Université de Toulouse, INSA-CNRS-UPS, LPCNO, Toulouse, France.
  • Mangin S; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
  • Rojas-Sánchez JC; Institut Jean Lamour, Université de Lorraine, CNRS, UMR 7198, Nancy, France.
  • Wang JP; Institut Jean Lamour, Université de Lorraine, CNRS, UMR 7198, Nancy, France.
  • Beard MC; Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA.
  • Gerhardt NC; Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, USA.
  • Zutic I; Photonics and Terahertz Technology, Ruhr-Universität Bochum, Bochum, Germany.
  • Lu Y; Department of Physics, University at Buffalo, State University of New York, Buffalo, NY, USA.
Nature ; 627(8005): 783-788, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38538937
ABSTRACT
Controlling the intensity of emitted light and charge current is the basis of transferring and processing information1. By contrast, robust information storage and magnetic random-access memories are implemented using the spin of the carrier and the associated magnetization in ferromagnets2. The missing link between the respective disciplines of photonics, electronics and spintronics is to modulate the circular polarization of the emitted light, rather than its intensity, by electrically controlled magnetization. Here we demonstrate that this missing link is established at room temperature and zero applied magnetic field in light-emitting diodes2-7, through the transfer of angular momentum between photons, electrons and ferromagnets. With spin-orbit torque8-11, a charge current generates also a spin current to electrically switch the magnetization. This switching determines the spin orientation of injected carriers into semiconductors, in which the transfer of angular momentum from the electron spin to photon controls the circular polarization of the emitted light2. The spin-photon conversion with the nonvolatile control of magnetization opens paths to seamlessly integrate information transfer, processing and storage. Our results provide substantial advances towards electrically controlled ultrafast modulation of circular polarization and spin injection with magnetization dynamics for the next-generation information and communication technology12, including space-light data transfer. The same operating principle in scaled-down structures or using two-dimensional materials will enable transformative opportunities for quantum information processing with spin-controlled single-photon sources, as well as for implementing spin-dependent time-resolved spectroscopies.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article