Your browser doesn't support javascript.
loading
Composite of KLVFF-Transthyretin-Penetratin and Manganese Dioxide Nanoclusters: A Multifunctional Agent against Alzheimer's ß-Amyloid Fibrillogenesis.
Lan, Haitao; Wang, Ying; Liu, Wei; Dong, Xiaoyan; Sun, Yan.
Afiliação
  • Lan H; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
  • Wang Y; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
  • Liu W; Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
  • Dong X; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
  • Sun Y; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
Molecules ; 29(6)2024 Mar 21.
Article em En | MEDLINE | ID: mdl-38543041
ABSTRACT
Design of amyloid ß-protein (Aß) inhibitors is considered an effective strategy for the prevention and treatment of Alzheimer's disease (AD). However, the limited blood-brain barrier (BBB) penetration and poor Aß-targeting capability restricts the therapeutic efficiency of candidate drugs. Herein, we have proposed to engineer transthyretin (TTR) by fusion of the Aß-targeting peptide KLVFF and cell-penetrating peptide Penetratin to TTR, and derived a fusion protein, KLVFF-TTR-Penetratin (KTP). Moreover, to introduce the scavenging activity for reactive oxygen species (ROS), a nanocomposite of KTP and manganese dioxide nanoclusters (KTP@MnO2) was fabricated by biomineralization. Results revealed that KTP@MnO2 demonstrated significantly enhanced inhibition on Aß aggregation as compared to TTR. The inhibitory effect was increased from 18%, 33%, and 49% (10, 25, and 50 µg/mL TTR, respectively) to 52%, 81%, and 100% (10, 25, and 50 µg/mL KTP@MnO2). In addition, KTP@MnO2 could penetrate the BBB and target amyloid plaques. Moreover, multiple ROS, including hydroxyl radicals, superoxide radicals, hydrogen peroxide, and Aß-induced-ROS, which cannot be scavenged by TTR, were scavenged by KTP@MnO2, thus resulting in the mitigation of cellular oxidative damages. More importantly, cell culture and in vivo experiments with AD nematodes indicated that KTP@MnO2 at 50 µg/mL increased the viability of Aß-treated cells from 66% to more than 95%, and completely cleared amyloid plaques in AD nematodes and extended their lifespan by 7 d. Overall, despite critical aspects such as the stability, metabolic distribution, long-term biotoxicity, and immunogenicity of the nanocomposites in mammalian models remaining to be investigated, this work has demonstrated the multifunctionality of KTP@MnO2 for targeting Aß in vivo, and provided new insights into the design of multifunctional nanocomposites of protein-metal clusters against AD.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fragmentos de Peptídeos / Peptídeos Penetradores de Células / Doença de Alzheimer Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fragmentos de Peptídeos / Peptídeos Penetradores de Células / Doença de Alzheimer Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article