Your browser doesn't support javascript.
loading
Ivermectin-Loaded Mesoporous Silica and Polymeric Nanocapsules: Impact on Drug Loading, In Vitro Solubility Enhancement, and Release Performance.
Velho, Maiara Callegaro; Funk, Nadine Lysyk; Deon, Monique; Benvenutti, Edilson Valmir; Buchner, Silvio; Hinrichs, Ruth; Pilger, Diogo André; Beck, Ruy Carlos Ruver.
Afiliação
  • Velho MC; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, RS, Brazil.
  • Funk NL; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia-UFRGS, Av. Ipiranga, 2752, 4° Andar, Porto Alegre 90610-000, RS, Brazil.
  • Deon M; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, RS, Brazil.
  • Benvenutti EV; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia-UFRGS, Av. Ipiranga, 2752, 4° Andar, Porto Alegre 90610-000, RS, Brazil.
  • Buchner S; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia-UFRGS, Av. Ipiranga, 2752, 4° Andar, Porto Alegre 90610-000, RS, Brazil.
  • Hinrichs R; Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil.
  • Pilger DA; Laboratório de Sólidos e Superfícies, Instituto de Química-UFRGS, Porto Alegre 90650-001, RS, Brazil.
  • Beck RCR; Laboratório de Altas Pressões e Materiais Avançados (LAPMA), Instituto de Física-UFRGS, Porto Alegre 91501-970, RS, Brazil.
Pharmaceutics ; 16(3)2024 Feb 26.
Article em En | MEDLINE | ID: mdl-38543218
ABSTRACT
Ivermectin (IVM), a widely used drug for parasitic infections, faces formulation and application challenges due to its poor water solubility and limited bioavailability. Pondering the impact of IVM's high partition coefficient value (log P) on its drug release performance, it is relevant to explore whether IVM nanoencapsulation in organic or inorganic nanoparticles would afford comparable enhanced aqueous solubility. To date, the use of inorganic nanoparticles remains an unexplored approach for delivering IVM. Therefore, here we loaded IVM in mesoporous silica particles (IVM-MCM), as inorganic nanomaterial, and in well-known poly(ε-caprolactone) nanocapsules (IVM-NC). IVM-MCM had a well-organized hexagonal mesoporous structure, reduced surface area, and high drug loading of 10% w/w. IVM-NC had a nanometric mean size (196 nm), high encapsulation efficiency (100%), physicochemical stability as an aqueous dispersion, and drug loading of 0.1% w/w. Despite differing characteristics, both nanoencapsulated forms enhance IVM's aqueous intrinsic solubility compared to a crystalline IVM after 72 h, IVM-MCM and IVM-NC achieve 72% and 78% releases through a dialysis bag, whereas crystalline IVM dispersion achieves only 40% drug diffusion. These results show distinct controlled release profiles, where IVM-NC provides a deeper sustained controlled release over the whole experiment compared to the inorganic nanomaterial (IVM-MCM). Discussing differences, including drug loading and release kinetics, is crucial for optimizing IVM's therapeutic performance. The study design, combined with administration route plans and safety considerations for humans and animals, may expedite the rational optimization of IVM nanoformulations for swift clinical translation.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article