Your browser doesn't support javascript.
loading
Unmasking the sky: high-resolution PM2.5 prediction in Texas using machine learning techniques.
Zhang, Kai; Lin, Jeffrey; Li, Yuanfei; Sun, Yue; Tong, Weitian; Li, Fangyu; Chien, Lung-Chang; Yang, Yiping; Su, Wei-Chung; Tian, Hezhong; Fu, Peng; Qiao, Fengxiang; Romeiko, Xiaobo Xue; Lin, Shao; Luo, Sheng; Craft, Elena.
Afiliação
  • Zhang K; Department of Environmental Health Sciences, School of Public Health,University at Albany, State University of New York, Rensselaer, NY, USA. kzhang9@albany.edu.
  • Lin J; Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.
  • Li Y; Asian Demographic Research Institute, Shanghai University, Shanghai, China.
  • Sun Y; Department of International Development, Community, and Environment, Clark University, Worcester, MA, USA.
  • Tong W; Department of Computer Science, Georgia Southern University, Statesboro, GA, USA.
  • Li F; Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.
  • Chien LC; Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada, Las Vegas, Las Vegas, NV, USA.
  • Yang Y; Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.
  • Su WC; Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.
  • Tian H; State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing, China.
  • Fu P; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing, China.
  • Qiao F; Department of Plant Biology, University of Illinois, Urbana, IL, USA.
  • Romeiko XX; Center for Economy, Environment, and Energy, Harrisburg University, Harrisburg, PA, USA.
  • Lin S; Innovative Transportation Research Institute, Texas Southern University, Houston, TX, USA.
  • Luo S; Department of Environmental Health Sciences, School of Public Health,University at Albany, State University of New York, Rensselaer, NY, USA.
  • Craft E; Department of Environmental Health Sciences, School of Public Health,University at Albany, State University of New York, Rensselaer, NY, USA.
Article em En | MEDLINE | ID: mdl-38561475
ABSTRACT

BACKGROUND:

Although PM2.5 (fine particulate matter with an aerodynamic diameter less than 2.5 µm) is an air pollutant of great concern in Texas, limited regulatory monitors pose a significant challenge for decision-making and environmental studies.

OBJECTIVE:

This study aimed to predict PM2.5 concentrations at a fine spatial scale on a daily basis by using novel machine learning approaches and incorporating satellite-derived Aerosol Optical Depth (AOD) and a variety of weather and land use variables.

METHODS:

We compiled a comprehensive dataset in Texas from 2013 to 2017, including ground-level PM2.5 concentrations from regulatory monitors; AOD values at 1-km resolution based on images retrieved from the MODIS satellite; and weather, land-use, population density, among others. We built predictive models for each year separately to estimate PM2.5 concentrations using two machine learning approaches called gradient boosted trees and random forest. We evaluated the model prediction performance using in-sample and out-of-sample validations.

RESULTS:

Our predictive models demonstrate excellent in-sample model performance, as indicated by high R2 values generated from the gradient boosting models (0.94-0.97) and random forest models (0.81-0.90). However, the out-of-sample R2 values fall within a range of 0.52-0.75 for gradient boosting models and 0.44-0.69 for random forest models. Model performance varies slightly across years. A generally decreasing trend in predicted PM2.5 concentrations over time is observed in Eastern Texas. IMPACT STATEMENT We utilized machine learning approaches to predict PM2.5 levels in Texas. Both gradient boosting and random forest models perform well. Gradient boosting models perform slightly better than random forest models. Our models showed excellent in-sample prediction performance (R2 > 0.9).
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article