Your browser doesn't support javascript.
loading
Mesenchymal cells regulate enteric neural crest cell migration via RET-GFRA1b trans-signaling.
Morikawa, Mari; Yoshizaki, Hisayoshi; Yasui, Yoshitomo; Nishida, Shoichi; Saikawa, Yutaka; Kohno, Miyuki; Okajima, Hideaki.
Afiliação
  • Morikawa M; Department of Pediatrics, Kanazawa Medical University, Ishikawa 920-0293, Japan.
  • Yoshizaki H; Department of Pediatric Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan. Electronic address: yossy@kanazawa-med.ac.jp.
  • Yasui Y; Department of Pediatric Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan.
  • Nishida S; Department of Pediatric Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan.
  • Saikawa Y; Department of Pediatrics, Kanazawa Medical University, Ishikawa 920-0293, Japan.
  • Kohno M; Department of Pediatric Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan.
  • Okajima H; Department of Pediatric Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan.
Biochem Biophys Res Commun ; 710: 149861, 2024 May 28.
Article em En | MEDLINE | ID: mdl-38581949
ABSTRACT
During early development, the enteric nervous system forms from the migration of enteric neural crest cells (ENCCs) from the foregut to the hindgut, where they undergo proliferation and differentiation facilitated by interactions with enteric mesenchymal cells (EMCs). This study investigates the impact on ENCC migration of EMC-ENCC communication mediated by GFRA1b expressed in EMCs. GFRA1-expressing cells in day 11-12 (E11-12) mouse embryos differentiated into smooth muscle cells from E12 onwards. Observations at E12-13.5 revealed high levels of GFRA1 expression on the anti-mesenteric side of the hindgut, correlating with enhanced ENCC migration. This indicates that GFRA1 in EMCs plays a role in ENCC migration during development. Examining GFRA1 isoforms, we found high levels of GFRA1b, which lacks amino acids 140-144, in EMCs. To assess the impact of GFRA1 isoforms on EMC-ENCC communication, we conducted neurosphere drop assays. This revealed that GFRA1b-expressing cells promoted GDNF-dependent extension and increased neurite density in ENCC neurospheres. Co-culture of ENCC mimetic cells expressing RET and GFRA1a with EMC mimetic cells expressing GFRA1a, GFRA1b, or vector alone showed that only GFRA1b-expressing co-cultured cells sustained RET phosphorylation in ENCC-mimetic cells for over 120 min upon GDNF stimulation. Our study provides evidence that GFRA1b-mediated cell-to-cell communication plays a critical role in ENCC motility in enteric nervous system development. These findings contribute to understanding the cellular interactions and signaling mechanisms that underlie enteric nervous system formation and highlight potential therapeutic targets for gastrointestinal motility disorders.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sistema Nervoso Entérico / Crista Neural Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sistema Nervoso Entérico / Crista Neural Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article