Microstructure and Mechanical Properties of a Novel Al-Mg-Sc-Ti Alloy Fabricated by Laser Powder Bed Fusion.
Materials (Basel)
; 17(3)2024 Jan 31.
Article
em En
| MEDLINE
| ID: mdl-38591563
ABSTRACT
(TiH2 + ScH3)/Al-Mg composite powders with different Ti contents were produced by ball milling. These composite powders were fabricated to cube and cuboid shape samples via a laser powder bed fusion process with optimal processing parameters. The TiH2 and ScH3 particles underwent dehydrogenation during the laser powder bed fusion process, and these composite powders ultimately formed Al-Mg-Sc-Ti alloys. The relative density, printability, microstructure, hardness and tensile properties of these alloy samples were investigated. The results show that these Al-Mg-Sc-Ti alloys have lower hot-crack sensitivity, having fine equiaxed grains. An Al18Mg3(Ti,Sc)2 intermetallic phase and in situ L12-Al3(Sc,Ti) precipitations formed during the laser powder bed fusion process, which is beneficial for nucleation and dispersion strengthening. The ultimate tensile strength of the Al-Mg-0.7Sc-1.0Ti alloy was 313.6 MPa with an elongation of 6.6%. During the hot isostatic pressing treatment, most of the Mg element precipitated from the matrix and changed the Al3(Sc,Ti) into a Al18Mg3(Ti,Sc)2 precipitate completely. The Al-Mg-Sc-Ti alloys were nearly fully dense after the hot isostatic pressing treatment and exhibited better mechanical properties. The ultimate tensile strength of the Al-Mg-0.7Sc-1.0Ti was 475 MPa with an elongation of 8.5%.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article