Your browser doesn't support javascript.
loading
Nucleation-Inhibited Emulsion Interfacial Assembled Polydopamine Microvesicles as Artificial Antigen-Presenting Cells.
Dong, Lingkai; Liu, Minchao; Fang, Meng; Lu, Qianqian; Li, Xingjin; Ma, Yanming; Zhao, Tiancong.
Afiliação
  • Dong L; School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011
  • Liu M; School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011
  • Fang M; Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China.
  • Lu Q; School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011
  • Li X; School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011
  • Ma Y; School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011
  • Zhao T; School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011
Small ; 20(34): e2400714, 2024 Aug.
Article em En | MEDLINE | ID: mdl-38593314
ABSTRACT
Albeit microemulsion systems have emerged as efficient platforms for fabricating tunable nano/microstructures, lack of understanding on the emulsion-interfacial assembly hindered the control of fabrication. Herein, a nucleation-inhibited microemulsion interfacial assembly method is proposed, which deviates from conventional interfacial nucleation approaches, for the synthesis of polydopamine microvesicles (PDA MVs). These PDA MVs exhibit an approximate diameter of 1 µm, showcasing a pliable structure reminiscent of cellular morphology. Through modifications of antibodies on the surface of PDA MVs, their capacity as artificial antigen presentation cells is evaluated. In comparison to solid nanoparticles, PDA MVs with cell-like structures show enhanced T-cell activation, resulting in a 1.5-fold increase in CD25 expression after 1 day and a threefold surge in PD-1 positivity after 7 days. In summary, the research elucidates the influence of nucleation and interfacial assembly in microemulsion polymerization systems, providing a direct synthesis method for MVs and substantiating their effectiveness as artificial antigen-presenting cells.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Polímeros / Emulsões / Indóis / Células Apresentadoras de Antígenos Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Polímeros / Emulsões / Indóis / Células Apresentadoras de Antígenos Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article