Your browser doesn't support javascript.
loading
Phase-Dependent Magnetic Proximity Modulations on Valley Polarization and Splitting.
Li, Jin'an; Chen, Zilong; Zhou, Jiangpeng; Zhang, Yiteng; Li, Xu; Wu, Zhiming; Wu, Yaping; Kang, Junyong.
Afiliação
  • Li J; Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China.
  • Chen Z; Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China.
  • Zhou J; Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China.
  • Zhang Y; Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China.
  • Li X; Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China.
  • Wu Z; Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China.
  • Wu Y; Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China.
  • Kang J; Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China.
ACS Nano ; 18(16): 10921-10929, 2024 Apr 23.
Article em En | MEDLINE | ID: mdl-38608131
ABSTRACT
Proximate-induced magnetic interactions present a promising strategy for precise manipulation of valley degrees of freedom. Taking advantage of the splendid valleytronic platform of transition metal dichalcogenides, magnetic two-dimensional VSe2 with different phases are introduced to intervene in the spin of electrons and modulate their valleytronic properties. When constructing the heterostructures, 1T-VSe2/WX2 (X = S and Se) showcases significant improvement in the valley polarizations at room temperature, while 2H-VSe2/WX2 exhibits superior performance at low temperatures and demonstrates heightened sensitivity to the external magnetic field. Simultaneously, considerable valley splitting with a large geff factor up to -29.0 is observed in 2H-VSe2/WS2, while it is negligible in 1T-VSe2/WX2. First-principles calculations reveal a phase-dependent magnetic proximity mechanism on the valleytronic modulations, which is dominated by interfacial charge transfer in 1T-VSe2/WX2 and the proximity exchange field in 2H-VSe2/WX2 heterostructures. The effective control over valley degrees of freedom will bridge the valleytronic physics and devices, rendering enormous potential in the field of valley quantum applications.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article