Your browser doesn't support javascript.
loading
Ex vivo precision-cut liver slices model disease phenotype and monitor therapeutic response for liver monogenic diseases.
Perocheau, Dany; Gurung, Sonam; Touramanidou, Loukia; Duff, Claire; Sharma, Garima; Sebire, Neil; Finn, Patrick F; Cavedon, Alex; Siddiqui, Summar; Rice, Lisa; Martini, Paolo G V; Frassetto, Andrea; Baruteau, Julien.
Afiliação
  • Perocheau D; Great Ormond Street Institute of Child Health, University College London, London, England, WC1N 1EH, UK.
  • Gurung S; Great Ormond Street Institute of Child Health, University College London, London, England, WC1N 1EH, UK.
  • Touramanidou L; Great Ormond Street Institute of Child Health, University College London, London, England, WC1N 1EH, UK.
  • Duff C; Great Ormond Street Institute of Child Health, University College London, London, England, WC1N 1EH, UK.
  • Sharma G; Great Ormond Street Institute of Child Health, University College London, London, England, WC1N 1EH, UK.
  • Sebire N; Great Ormond Street Hospital for Children NHS Foundation Trust, London, England, WC1N 3JH, UK.
  • Finn PF; Moderna Inc., Cambridge, MA 02139, USA.
  • Cavedon A; Moderna Inc., Cambridge, MA 02139, USA.
  • Siddiqui S; Moderna Inc., Cambridge, MA 02139, USA.
  • Rice L; Moderna Inc., Cambridge, MA 02139, USA.
  • Martini PGV; Moderna Inc., Cambridge, MA 02139, USA.
  • Frassetto A; Moderna Inc., Cambridge, MA 02139, USA.
  • Baruteau J; Great Ormond Street Institute of Child Health, University College London, London, England, WC1N 1EH, UK.
F1000Res ; 12: 1580, 2023.
Article em En | MEDLINE | ID: mdl-38618017
ABSTRACT

Background:

In academic research and the pharmaceutical industry, in vitro cell lines and in vivo animal models are considered as gold standards in modelling diseases and assessing therapeutic efficacy. However, both models have intrinsic limitations, whilst the use of precision-cut tissue slices can bridge the gap between these mainstream models. Precision-cut tissue slices combine the advantage of high reproducibility, studying all cell sub-types whilst preserving the tissue matrix and extracellular architecture, thereby closely mimicking a mini-organ. This approach can be used to replicate the biological phenotype of liver monogenic diseases using mouse models.

Methods:

Here, we describe an optimised and easy-to-implement protocol for the culture of sections from mouse livers, enabling its use as a reliable ex-vivo model to assess the therapeutic screening of inherited metabolic diseases.

Results:

We show that precision-cut liver sections can be a reliable model for recapitulating the biological phenotype of inherited metabolic diseases, exemplified by common urea cycle defects such as citrullinemia type 1 and argininosuccinic aciduria, caused by argininosuccinic synthase (ASS1) and argininosuccinic lyase (ASL) deficiencies respectively.

Conclusions:

Therapeutic response to gene therapy such as messenger RNA replacement delivered via lipid nanoparticles can be monitored, demonstrating that precision-cut liver sections can be used as a preclinical screening tool to assess therapeutic response and toxicity in monogenic liver diseases.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hepatopatias / Doenças Metabólicas Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hepatopatias / Doenças Metabólicas Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article