Your browser doesn't support javascript.
loading
Engineering of Cerium Modified TiNb2O7 Nanoparticles For Low-Temperature Lithium-Ion Battery.
Yu, Gengchen; Huang, Jian; Bai, Xue; Li, Tao; Song, Shuxin; Zhou, Yuting; Wu, Nannan; Yao, Shuyu; Lu, Xiao; Wu, Weikang.
Afiliação
  • Yu G; School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, P. R. China.
  • Huang J; Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong, 250061, P. R. China.
  • Bai X; School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, P. R. China.
  • Li T; Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong, 250061, P. R. China.
  • Song S; School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, P. R. China.
  • Zhou Y; School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, P. R. China.
  • Wu N; School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, P. R. China.
  • Yao S; School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, P. R. China.
  • Lu X; College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590, P. R. China.
  • Wu W; Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong, 250061, P. R. China.
Small ; 20(34): e2308858, 2024 Aug.
Article em En | MEDLINE | ID: mdl-38618927
ABSTRACT
Although TiNb2O7 (TNO) with comparable operating potential and ideal theoretical capacity is considered to be the most ideal replacement for negative Li4Ti5O12 (LTO), the low ionic and electronic conductivity still limit its practical application as satisfactory anode for lithium-ion batteries (LIBs) with high-power density. Herein, TNO nanoparticles modified by Cerium (Ce) with outstanding electrochemical performance are synthesized. The successful introduction of Ce3+ in the lattice leads to increased interplanar spacing, refined grain size, more oxygen vacancy, and a smaller lithium diffusion barrier, which are conducive to improve conductivity of both Li+ and electrons. As a result, the modified TNO reaches high reversible capacity of 256.0 mA h g-1 at 100 mA g-1 after 100 cycles, and 183.0 mA h g-1 even under 3200 mA g-1. In particular, when the temperature drops to -20 °C, the cell undergoing 1500 cycles at a high current density of 500 mA g-1 can still reach 89.7 mA h g-1, corresponding to a capacity decay rate per cycle of only 0.033%. This work provides a new way to improve the electrochemical properties of alternative anodes for LIBs at extreme temperature.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article