Your browser doesn't support javascript.
loading
Transcriptomic analysis of hub genes regulating albinism in light- and temperature-sensitive albino tea cultivars 'Zhonghuang 1' and 'Zhonghuang 2'.
Wang, Lu; Di, Taimei; Li, Nana; Peng, Jing; Wu, Yedie; He, Mingming; Hao, Xinyuan; Huang, Jianyan; Ding, Changqing; Yang, Yajun; Wang, Xinchao.
Afiliação
  • Wang L; Key laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 310008, Hangzhou, China.
  • Di T; Key laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 310008, Hangzhou, China.
  • Li N; Key laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 310008, Hangzhou, China.
  • Peng J; Key laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 310008, Hangzhou, China.
  • Wu Y; Key laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 310008, Hangzhou, China.
  • He M; Key laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 310008, Hangzhou, China.
  • Hao X; Key laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 310008, Hangzhou, China.
  • Huang J; Key laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 310008, Hangzhou, China.
  • Ding C; Key laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 310008, Hangzhou, China.
  • Yang Y; Key laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 310008, Hangzhou, China.
  • Wang X; Key laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 310008, Hangzhou, China. wangxinchao@caas.cn.
Plant Mol Biol ; 114(3): 44, 2024 Apr 17.
Article em En | MEDLINE | ID: mdl-38630172
ABSTRACT
Albino tea cultivars have high economic value because their young leaves contain enhanced free amino acids that improve the quality and properties of tea. Zhonghuang 1 (ZH1) and Zhonghuang 2 (ZH2) are two such cultivars widely planted in China; however, the environmental factors and molecular mechanisms regulating their yellow-leaf phenotype remain unclear. In this study, we demonstrated that both ZH1 and ZH2 are light- and temperature-sensitive. Under natural sunlight and low-temperature conditions, their young shoots were yellow with decreased chlorophyll and an abnormal chloroplast ultrastructure. Conversely, young shoots were green with increased chlorophyll and a normal chloroplast ultrastructure under shading and high-temperature conditions. RNA-seq analysis was performed for high light and low light conditions, and pairwise comparisons identified genes exhibiting different light responses between albino and green-leaf cultivars, including transcription factors, cytochrome P450 genes, and heat shock proteins. Weighted gene coexpression network analyses of RNA-seq data identified the modules related to chlorophyll differences between cultivars. Genes involved in chloroplast biogenesis and development, light signaling, and JA biosynthesis and signaling were typically downregulated in albino cultivars, accompanied by a decrease in JA-ILE content in ZH2 during the albino period. Furthermore, we identified the hub genes that may regulate the yellow-leaf phenotype of ZH1 and ZH2, including CsGDC1, CsALB4, CsGUN4, and a TPR gene (TEA010575.1), which were related to chloroplast biogenesis. This study provides new insights into the molecular mechanisms underlying leaf color formation in albino tea cultivars.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Albinismo / Perfilação da Expressão Gênica Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Albinismo / Perfilação da Expressão Gênica Idioma: En Ano de publicação: 2024 Tipo de documento: Article