Your browser doesn't support javascript.
loading
Linkage Engineering in Covalent Organic Frameworks for Metal-Free Electrocatalytic C2H4 Production from CO2.
Xiao, Yang; Lu, Jie; Chen, Kean; Cao, Yuliang; Gong, Chengtao; Ke, Fu-Sheng.
Afiliação
  • Xiao Y; Hubei Key Laboratory of Electrochemical Power Sources, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
  • Lu J; Hubei Key Laboratory of Electrochemical Power Sources, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
  • Chen K; Hubei Key Laboratory of Electrochemical Power Sources, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
  • Cao Y; Hubei Key Laboratory of Electrochemical Power Sources, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
  • Gong C; Hubei Key Laboratory of Electrochemical Power Sources, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
  • Ke FS; Hubei Key Laboratory of Electrochemical Power Sources, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
Angew Chem Int Ed Engl ; 63(26): e202404738, 2024 Jun 21.
Article em En | MEDLINE | ID: mdl-38634674
ABSTRACT
Electrocatalytic carbon dioxide reduction reaction (CO2RR) to produce ethylene (C2H4) is conducive to sustainable development of energy and environment. At present, most electrocatalysts for C2H4 production are limited to the heavy metal copper, meanwhile, achieving metal-free catalysis remains a challenge. Noted piperazine with sp3 N hybridization is beneficial to CO2 capture, but CO2RR performance and mechanism have been lacking. Herein, based on linkage engineering, we construct a novel high-density sp3 N catalytic array via introducing piperazine into the crystalline and microporous aminal-linked covalent organic frameworks (COFs). Thanks to its high sp3 N density, strong CO2 capture capacity and great hydrophilicity, aminal-linked COF successfully achieves the conversion of CO2 to C2H4 with a Faraday efficiency up to 19.1 %, which is stand out in all reported metal-free COF electrocatalysts. In addition, a series of imine-linked COFs are synthesized and combined with DFT calculations to demonstrate the critical role of sp3 N in enhancing the kinetics of CO2RR. Therefore, this work reveals the extraordinary potential of linkage engineering in COFs to break through some catalytic bottlenecks.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article