Your browser doesn't support javascript.
loading
A novel approach to pH-Responsive targeted cancer Therapy: Inhibition of FaDu cancer cell proliferation with a pH low insertion Peptide-Conjugated DGAT1 inhibitor.
Deskeuvre, Marine; Lan, Junjie; Messens, Joris; Riant, Olivier; Feron, Olivier; Frédérick, Raphaël.
Afiliação
  • Deskeuvre M; Louvain Drug Research Institute (LDRI), Medicinal Chemistry Research Group (CMFA), Université Catholique de Louvain (UCLouvain), 73 Avenue Emmanuel Mounier, B-1200 Brussel, Belgium; Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université Catho
  • Lan J; Institute of Condensed Matter and Nanosciences, MOST Division, Place Louis Pasteur, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve B-1348, Belgium.
  • Messens J; VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie (VIB), 1050 Brussels, Belgium; Brussels Center for Redox Biology, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium.
  • Riant O; Institute of Condensed Matter and Nanosciences, MOST Division, Place Louis Pasteur, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve B-1348, Belgium.
  • Feron O; Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 57 Avenue Hippocrate B1.57.04, B-1200 Brussels, Belgium; Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institu
  • Frédérick R; Louvain Drug Research Institute (LDRI), Medicinal Chemistry Research Group (CMFA), Université Catholique de Louvain (UCLouvain), 73 Avenue Emmanuel Mounier, B-1200 Brussel, Belgium. Electronic address: raphael.frederick@uclouvain.be.
Int J Pharm ; 657: 124132, 2024 May 25.
Article em En | MEDLINE | ID: mdl-38641019
ABSTRACT
Targeting enzymes involved in lipid metabolism is increasingly recognized as a promising anticancer strategy. Efficient inhibition of diacylglycerol O-transferase 1 (DGAT1) can block fatty acid (FA) storage. This, in turn, triggers an increase in free polyunsaturated FA concentration, leading to peroxidation and ferroptosis. In this study, we report the development of a pH-sensitive peptide (pHLIP)-drug conjugate designed to selectively deliver DGAT1 inhibitors to cancer cells nested within the acidic microenvironment of tumors. We utilized two previously established pHLIP sequences for coupling with drugs. The study of DGAT1 conjugates in large unilamellar vesicles (LUVs) of different compositions did not reveal enhanced pH-dependent insertion compared to POPC LUVs. However, using in vitro 3D tumor spheroids, significant antiproliferative effects were observed upon exposure to pHLIP-T863 (DGAT1 inhibitor) conjugates, surpassing the inhibitory activity of T863 alone. In conclusion, our study provides the first evidence that pHLIP-based conjugates with DGAT1 inhibitors have the potential to specifically target the acidic compartment of tumors. Moreover, it sheds light on the limitations of LUV models in capturing the pH-dependency of such conjugates.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proliferação de Células / Diacilglicerol O-Aciltransferase / Antineoplásicos Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proliferação de Células / Diacilglicerol O-Aciltransferase / Antineoplásicos Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article