Your browser doesn't support javascript.
loading
Virtual reality-empowered deep-learning analysis of brain cells.
Kaltenecker, Doris; Al-Maskari, Rami; Negwer, Moritz; Hoeher, Luciano; Kofler, Florian; Zhao, Shan; Todorov, Mihail; Rong, Zhouyi; Paetzold, Johannes Christian; Wiestler, Benedikt; Piraud, Marie; Rueckert, Daniel; Geppert, Julia; Morigny, Pauline; Rohm, Maria; Menze, Bjoern H; Herzig, Stephan; Berriel Diaz, Mauricio; Ertürk, Ali.
Afiliação
  • Kaltenecker D; Institute for Diabetes and Cancer (IDC), Helmholtz Munich, Neuherberg, Germany.
  • Al-Maskari R; Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany.
  • Negwer M; German Center for Diabetes Research (DZD), Neuherberg, Germany.
  • Hoeher L; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.
  • Kofler F; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.
  • Zhao S; Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany.
  • Todorov M; Department of Computer Science, TUM Computation, Information and Technology, Technical University of Munich (TUM), Munich, Germany.
  • Rong Z; Center for Translational Cancer Research of the TUM (TranslaTUM), Munich, Germany.
  • Paetzold JC; Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany.
  • Wiestler B; Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany.
  • Piraud M; Department of Computer Science, TUM Computation, Information and Technology, Technical University of Munich (TUM), Munich, Germany.
  • Rueckert D; Center for Translational Cancer Research of the TUM (TranslaTUM), Munich, Germany.
  • Geppert J; Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
  • Morigny P; Helmholtz AI, Helmholtz Munich, Neuherberg, Germany.
  • Rohm M; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.
  • Menze BH; Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany.
  • Herzig S; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.
  • Berriel Diaz M; Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany.
  • Ertürk A; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.
Nat Methods ; 21(7): 1306-1315, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38649742
ABSTRACT
Automated detection of specific cells in three-dimensional datasets such as whole-brain light-sheet image stacks is challenging. Here, we present DELiVR, a virtual reality-trained deep-learning pipeline for detecting c-Fos+ cells as markers for neuronal activity in cleared mouse brains. Virtual reality annotation substantially accelerated training data generation, enabling DELiVR to outperform state-of-the-art cell-segmenting approaches. Our pipeline is available in a user-friendly Docker container that runs with a standalone Fiji plugin. DELiVR features a comprehensive toolkit for data visualization and can be customized to other cell types of interest, as we did here for microglia somata, using Fiji for dataset-specific training. We applied DELiVR to investigate cancer-related brain activity, unveiling an activation pattern that distinguishes weight-stable cancer from cancers associated with weight loss. Overall, DELiVR is a robust deep-learning tool that does not require advanced coding skills to analyze whole-brain imaging data in health and disease.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / Realidade Virtual / Aprendizado Profundo Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / Realidade Virtual / Aprendizado Profundo Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article