Your browser doesn't support javascript.
loading
Leaf-Level Bidirectional Exchange of Formaldehyde on Deciduous and Evergreen Tree Saplings.
Shutter, Joshua D; Cox, Joshua L; Keutsch, Frank N.
Afiliação
  • Shutter JD; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.
  • Cox JL; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.
  • Keutsch FN; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.
ACS Earth Space Chem ; 8(4): 723-733, 2024 Apr 18.
Article em En | MEDLINE | ID: mdl-38654895
ABSTRACT
Gas-phase formaldehyde (HCHO) is formed in high yield from the oxidation of many volatile organic compounds (VOCs) and is commonly used as a constraint when testing the performance of VOC oxidation mechanisms in models. However, prior to using HCHO as a model constraint for VOC oxidation in forested regions, it is essential to have a thorough understanding of its foliar exchange. Therefore, a controlled laboratory setup was designed to measure the emission and dry deposition of HCHO at the leaf-level to red oak (Quercus rubra) and Leyland cypress (Cupressus × leylandii) tree saplings. The results show that HCHO has a compensation point (CP) that rises exponentially with temperature (22-35 °C) with a mean range of 0.3-0.9 ppbv. The HCHO CP results are also found to be independent of the studied tree species and 40-70% relative humidity. Given that HCHO mixing ratios in forests during the daytime are usually greater than 1 ppbv, the magnitude of the CP suggests that trees generally act as a net sink of HCHO. Additionally, the results show that HCHO foliar exchange is stomatally controlled and better matches a reactivity factor (f0) of 0 as opposed to 1 in conventional dry deposition parametrizations. At 30 °C, daytime HCHO dry deposition fluxes are reduced by upward of 50% when using f0 = 0 and a nonzero HCHO CP, although deposition remains the dominant canopy sink of HCHO. A reduced deposition sink also implies the increased importance of the gas-phase photolysis of HCHO as a source of HO2.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article