Your browser doesn't support javascript.
loading
Capillarity-Driven Enrichment and Hydrodynamic Trapping of Trace Nucleic Acids by Plasmonic Cavity Membrane for Rapid and Sensitive Detections.
Whang, Keumrai; Min, Junwon; Shin, Yonghee; Hwang, Inhyeok; Lee, Hyunjoo; Kwak, Taejin; La, Ju A; Kim, Sungbong; Kim, Dongchoul; Lee, Luke P; Kang, Taewook.
Afiliação
  • Whang K; Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, South Korea.
  • Min J; Institute of Integrated Biotechnology, Sogang University, Seoul, 04107, South Korea.
  • Shin Y; Department of Mechanical Engineering, Sogang University, Seoul, 04107, South Korea.
  • Hwang I; Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, South Korea.
  • Lee H; Institute of Integrated Biotechnology, Sogang University, Seoul, 04107, South Korea.
  • Kwak T; Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, South Korea.
  • La JA; Institute of Integrated Biotechnology, Sogang University, Seoul, 04107, South Korea.
  • Kim S; Department of Mechanical Engineering, Sogang University, Seoul, 04107, South Korea.
  • Kim D; Department of Mechanical Engineering, Sogang University, Seoul, 04107, South Korea.
  • Lee LP; Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, South Korea.
  • Kang T; Institute of Integrated Biotechnology, Sogang University, Seoul, 04107, South Korea.
Adv Mater ; 36(28): e2403896, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38663435
ABSTRACT
Small-reactor-based polymerase chain reaction (PCR) has attracted considerable attention. A significant number of tiny reactors must be prepared in parallel to capture, amplify, and accurately quantify few target genes in clinically relevant large volume, which, however, requires sophisticated microfabrication and longer sample-to-answer time. Here, single plasmonic cavity membrane is reported that not only enriches and captures few nucleic acids by taking advantage of both capillarity and hydrodynamic trapping but also quickly amplifies them for sensitive plasmonic detection. The plasmonic cavity membrane with few nanoliters in a void volume is fabricated by self-assembling gold nanorods with SiO2 tips. Simulations reveal that hydrodynamic stagnation between the SiO2 tips is mainly responsible for the trapping of the nucleic acid in the membrane. Finally, it is shown that the plasmonic cavity membrane is capable of enriching severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genes up to 20 000-fold within 1 min, amplifying within 3 min, and detecting the trace genes as low as a single copy µL-1. It is anticipated that this work not only expands the utility of PCR but also provides an innovative way of the enrichment and detection of trace biomolecules in a variety of point-of-care testing applications.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dióxido de Silício / Nanotubos / Hidrodinâmica / SARS-CoV-2 / Ouro Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dióxido de Silício / Nanotubos / Hidrodinâmica / SARS-CoV-2 / Ouro Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article