Your browser doesn't support javascript.
loading
Theranostic potential of a novel aptamer specifically targeting HER2 in breast cancer cells.
Küçükcankurt, Fulya; Uçak, Samet; Altiok, Nedret.
Afiliação
  • Küçükcankurt F; Department of Medical Biology, School of Medicine, Altinbas University, Istanbul, Turkiye.
  • Uçak S; Department of Medical Biology, School of Medicine, Istanbul Aydin University, Istanbul, Turkiye.
  • Altiok N; Department of Pharmacology and Medical Pharmacology, School of Medicine, Istinye University, Istanbul, Turkiye.
Turk J Biol ; 48(1): 35-45, 2024.
Article em En | MEDLINE | ID: mdl-38665781
ABSTRACT
Background/

aim:

The overexpression of HER2 is correlated with poorer outcomes and therapeutic resistance in breast cancer patients. While HER2-targeted therapies have shown improvement, prognosis remains poor for HER2-positive breast cancer patients, and these treatments have limitations. Therefore, it is crucial to explore effective molecular strategies for early detection and treatment of HER2-positive breast cancers. Materials and

methods:

In this study, we employed the cell-SELEX method to generate a selective aptamer capable of recognizing HER2 in its native conformation within breast cancer cells, for theranostic applications. Utilizing an adherent cell-SELEX approach, we developed and explored a DNA aptamer, named HMAP7, which can specifically target HER2 in the MDA-MB-453 and SK-BR-3 human breast cancer cell lines. After sequencing, the binding affinities of 10 candidate aptamers to HER2 receptors were evaluated by measuring fluorescence intensities within intact cells using near-infrared optical imaging. The dissociation constant of HMAP7 was determined to be in the nanomolar range in both cell lines.

Results:

The cell-SELEX-derived aptamer sequence, HMAP7 (41-mer), exhibited the highest binding affinity and specificity for HER2. HMAP7 was rapidly internalized into breast cancer cells overexpressing HER2 but showed no uptake in the HER2 receptor-deficient breast cancer cell line MDA-MB-231. Moreover, HMAP7 demonstrated remarkable selectivity for HER2, rendering it suitable for use in complex biological systems.

Conclusions:

Our findings suggest that the novel DNA aptamer HMAP7 holds promise for both therapeutic and diagnostic applications, enabling selective delivery of therapeutic agents or imaging of HER2-positive breast tumors.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article