Your browser doesn't support javascript.
loading
Sustainable strategies towards better utilization of synthetic polymers.
Shanthi, G; Beula Isabel, J; Thankachan, Rosbin; Premalatha, M.
Afiliação
  • Shanthi G; Department of Biotechnology, SRM Institute of Science and Technology, Chennai, India.
  • Beula Isabel J; Department of Energy and Environment, National Institute of Technology, Tiruchirappalli, India.
  • Thankachan R; Department of Energy and Environment, National Institute of Technology, Tiruchirappalli, India.
  • Premalatha M; Department of Energy and Environment, National Institute of Technology, Tiruchirappalli, India.
Biopolymers ; 115(4): e23581, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38666470
ABSTRACT
The abstract provides an overview of a study focused on analyzing diverse strategies to achieve sustainable utilization of synthetic polymers through effective waste management. The escalating global consumption of synthetic polymers has precipitated a concerning increase in plastic waste and environmental degradation. To address this challenge, novel materials with specified application goals, such as engineered plastic, have been developed and are intended for recycling and reuse. Despite the reuse and recycling, when plastic gets disposed into the environment, the degradation properties of plastics render a direct disposal hazard, posing a significant environmental threat. To mitigate these issues, the concept of replacing specific monomers of engineered synthetic plastics with bio-alternatives or blending them with other polymers to enhance sustainability and environmental compatibility has emerged. In this study, Acrylonitrile Butadiene Styrene (ABS) plastic is the focal material, and three distinct investigations were conducted. First, replacing ABS plastic's butadiene monomer with natural rubber was explored for its properties and environmental impact. Second, ABS plastic was blended with virgin, recycled, and bio-alternatives of PET (polyethylene terephthalate) and PVC (polyvinyl chloride) polymers. Lastly, recycled ABS blended with recycled PET and PVC was analyzed for mechanical properties. Comparative assessments of these blends were made based on mechanical properties, carbon emissions, and cost-effectiveness. The study determined that the r-ABS/r-PVC (recycled) blend exhibited the most favorable characteristics for practical application.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Polímeros / Reciclagem Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Polímeros / Reciclagem Idioma: En Ano de publicação: 2024 Tipo de documento: Article